
Giải giúp e câu 37 vs ạ
Giúp e giải chi tiết câu 35 đến 37 đi ạ
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}\)
\(=\dfrac{6}{2\left(4+4\right)}=\dfrac{3}{8}\)
\(f\left(3\right)=1-2m\)
Hàm liên tục trên R khi:
\(1-2m=\dfrac{3}{8}\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)
Giúp e giải chi tiết câu 35 36 37 đi ạ
35.
\(y'=5cos^4\left(2-3x\right).\left[cos\left(2-3x\right)\right]'\)
\(=5cos^4x.\left(-sin\left(2-3x\right)\right).\left(2-3x\right)'\)
\(=15cos^4\left(2-3x\right).sin\left(2-3x\right)\)
\(\Rightarrow\left\{{}\begin{matrix}m=15\\n=4\end{matrix}\right.\) \(\Rightarrow m+n=19\)
36.
\(U_2=2-\dfrac{1}{2}=\dfrac{3}{2}\) ; \(u_3=2-\dfrac{1}{\dfrac{3}{2}}=\dfrac{4}{3}\) ; \(u_5=2-\dfrac{1}{\dfrac{4}{3}}=\dfrac{5}{4}\)
\(\Rightarrow\) Quy nạp được \(u_n=\dfrac{n+1}{n}\)
\(\Rightarrow\lim\left(u_n\right)=\lim\dfrac{n+1}{n}=1\)
37.
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}=\dfrac{6}{2\left(\sqrt{9+7}+4\right)}=\dfrac{3}{8}\)
Hàm liên tục trên R khi:
\(\dfrac{3}{8}=1-2m\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)
giải giúp e câu c vs ạ e đag gâppspp
BÀI 3: Cho tam giác \( ABC \) vuông tại \( A \) ( \( AB < AC \) ). Đường cao \( AH \) ( \( H \in BC \) ). Gọi \( M \) và \( N \) lần lượt là hình chiếu của \( H \) trên \( AB \) và \( AC \).
a) Giả sử \( HB = 3,6 \, \text{cm} \), \( HC = 6,4 \, \text{cm} \). Tính độ dài \( HA \), \( AC \) và góc \( B \), góc \( C \)
b) Chứng minh: \( AM \cdot AB = AN \cdot AC \) và \( HB \cdot HC = AM \cdot MB + AN \cdot NC \)
c) Qua \( A \) kẻ đường thẳng vuông góc với \( MN \) cắt \( BC \) tại \( K \). Chứng minh rằng \( K \) là trung điểm của đoạn thẳng \( BC \)
a: ta có: BC=BH+CH
=>BC=3,6+6,4=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HA^2=HB\cdot HC=3,6\cdot6,4=23,04=4,8^2\)
=>HA=4,8(cm)
ΔHAC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC^2=4,8^2+6,4^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)
nên \(\hat{B}\) ≃53 độ
ΔABC vuông tại A
=>\(\hat{ABC}+\hat{ACB}=90^0\)
=>\(\hat{ACB}=90^0-53^0=37^0\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AM\cdot AB=AN\cdot AC\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\) (4)
Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>\(HA^2=HM^2+HN^2\) (3)
Xét ΔHAB vuông tại H có HM là đường cao
nên \(HM^2=MA\cdot MB\) (5)
Xét ΔHAC vuông tại H có HN là đường cao
nên \(HN^2=NA\cdot NC\left(6\right)\)
Từ (3),(4),(5),(6) suy ra \(HB\cdot HC=MA\cdot MB+NA\cdot NC\)
c: Ta có: AK⊥MN
=>\(\hat{KAC}+\hat{ANM}=90^0\)
mà \(\hat{ANM}=\hat{AHM}\) (AMHN là hình chữ nhật)
và \(\hat{AHM}=\hat{B}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{KAC}+\hat{B}=90^0\)
mà \(\hat{KCA}+\hat{B}=90^0\)
nên \(\hat{KAC}=\hat{KCA}\)
=>KA=KC
Ta có: \(\hat{KAC}+\hat{KAB}=\hat{BAC}=90^0\)
\(\hat{KCA}+\hat{KBA}=90^0\) (ΔABC vuông tại A)
mà \(\hat{KAC}=\hat{KCA}\)
nên \(\hat{KAB}=\hat{KBA}\)
=>KA=KB
mà KA=KC
nên KB=KC
=>K là trung điểm của BC
Giải giúp e câu 25 vs ạ
Giải giúp e câu 21 vs ạ
Giải giúp e câu 22 vs ạ
Giải giúp e câu này vs ạ 
giải giúp e câu 2,4,5,6 vs ạ.
Giải giúp e câu 85 vs ạ
Câu 84:
$\sin 3x+2\cos ^2x=1$
$\sin 3x=1-2\cos ^2x=-\cos 2x=\sin (2x-\frac{\pi}{2})$
\(\Rightarrow \left[\begin{matrix} 3x=2x-\frac{\pi}{2}+2k\pi\\ 3x=\frac{3}{2}\pi-2x+2k\pi\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=(2k+\frac{3}{2})\pi\\ x=\frac{2k+\frac{3}{2}}{5}\pi\end{matrix}\right.\) với $k$ nguyên
Nghiệm âm lớn nhất của pt:
$x=\frac{2(-1)+\frac{3}{2}}{5}\pi =\frac{-\pi}{10}$
84.
\(sin3x+2cos^2x=1\)
\(\Leftrightarrow sin3x+cos2x=0\)
\(\Leftrightarrow cos\left(\dfrac{\pi}{2}-3x\right)+cos2x=0\)
\(\Leftrightarrow2cos\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right).cos\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\\cos\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-\dfrac{x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{\pi}{4}-\dfrac{5x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{2}-k2\pi\\x=-\dfrac{\pi}{10}-\dfrac{k2\pi}{5}\end{matrix}\right.\)
\(x=-\dfrac{\pi}{2}-k2\pi< 0\Leftrightarrow k>-\dfrac{1}{4}\Rightarrow k=0\Rightarrow x=-\dfrac{\pi}{2}\)
\(x=-\dfrac{\pi}{10}-k2\pi< 0\Leftrightarrow k>-\dfrac{1}{20}\Rightarrow k=0\Rightarrow x=-\dfrac{\pi}{10}\)
Vậy \(x=-\dfrac{\pi}{10}\) là nghiệm âm lớn nhất
Câu 85:
ĐKXĐ: $\cos 2x; \cos 3x\neq 0$
$\tan 2x\tan 3x=1$
$\Leftrightarrow \sin 2x\sin 3x=\cos 2x\cos 3x$
$\Leftrightarrow 2\sin 2x\sin 3x=2\cos 2x\cos 3x$
$\Leftrightarrow \cos 5x+\cos x=\cos x-\cos 5x$
$\Leftrightarrow 2\cos 5x=0$
$\Leftrihgtarrow \cos 5x=0$
$\Leftrightarrow x=\frac{1}{5}(\frac{\pi}{2}+k\pi$
$=\frac{2k+1}{10}\pi$
Nghiệm âm lớn nhất: $\frac{-2+1}{10}\pi =\frac{-\pi}{10}$