\(M=\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2^2}\right)...\left(1+\dfrac{1}{2^{32}}\right)\)
\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+56\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}\left(xy+3x+2y+6\right)=\dfrac{1}{2}xy+56\\\dfrac{1}{2}\left(xy-2x-2y+4\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y+6=112\\-2x-2y+4=-64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=106\\-2x-2y=-68\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=106\\x=38\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=-4\end{matrix}\right.\)
\(x^2-19=5.9;\left(2x+1\right)^3=-0,001;\left(\dfrac{5}{6}\right)^{2x-1}=\left(\dfrac{5}{6}\right)^5;\left(\dfrac{1}{3}x-\dfrac{2}{3}\right)^3=27;\left(\dfrac{1}{32}\right)^x=\left(\dfrac{1}{2}\right)^{15}\)
a, \(x^2\) - 19 = 5.9
\(x^2\) - 19 = 45
\(x^2\) = 45 + 19
\(x^2\) = 64
\(x^2\) = 82
\(x\) = 8
b, (2\(x\) + 1)3 = -0,001
(2\(x\) + 1)3 = (-0,1)3
2\(x\) + 1 = -0,1
2\(x\) = -0,1 - 1
2\(x\) = - 1,1
\(x\) = -1,1: 2
\(x\) = - 0,55
\(x^2-19=5\cdot9\\\Rightarrow x^2-19=45\\\Rightarrow x^2=45+19\\\Rightarrow x^2=64\\\Rightarrow x^2=(\pm8)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
\(---\)
\((2x+1)^3=-0,001\\\Rightarrow (2x+1)^3=(-0,1)^3\\\Rightarrow2x+1=-0,1\\\Rightarrow2x=-0,1-1\\\Rightarrow2x=-1,1\\\Rightarrow x=-1,1:2\\\Rightarrow x=\dfrac{-11}{20}\\---\)
\(\bigg(\dfrac56\bigg)^{2x-1}=\bigg(\dfrac56\bigg)^5\\\Rightarrow 2x-1=5\\\Rightarrow2x=5+1\\\Rightarrow2x=6\\\Rightarrow x=6:2\\\Rightarrow x=3\\---\)
\(\bigg(\dfrac13x-\dfrac23\bigg)^3=27\\\Rightarrow\bigg(\dfrac13x-\dfrac23\bigg)^3=3^3\\\Rightarrow\dfrac13x-\dfrac23=3\\\Rightarrow\dfrac13x=3+\dfrac23\\\Rightarrow\dfrac13x=\dfrac{11}{3}\\\Rightarrow x=\dfrac{11}{3}:\dfrac13\\\Rightarrow x=11\\---\)
\(\bigg(\dfrac{1}{32}\bigg)^x=\bigg(\dfrac12\bigg)^{15}\\\Rightarrow\bigg(\dfrac{1}{32}\bigg)^x=\bigg[\bigg(\dfrac{1}{2}\bigg)^5\bigg]^3\\\Rightarrow\bigg(\dfrac{1}{32}\bigg)^x=\bigg(\dfrac{1^5}{2^5}\bigg)^3\\\Rightarrow\bigg(\dfrac{1}{32}\bigg)^x=\bigg(\dfrac{1}{32}\bigg)^3\\\Rightarrow x=3\\Toru\)
Bài 1:
1/\(\left(-\dfrac{25}{13}\right)+\left(-\dfrac{19}{17}\right)+\dfrac{12}{13}+\left(-\dfrac{25}{17}\right)\) 6/ \(2\dfrac{2}{15}.\dfrac{9}{17}.\dfrac{3}{32}:\left(-\dfrac{3}{17}\right)\)
2/\(\dfrac{1}{2}-\left(-\dfrac{1}{3}\right)+\dfrac{1}{23}+\dfrac{1}{6}\) 7/\(\left(\dfrac{-3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-1}{4}\right):\dfrac{3}{7}\)
3/\(\left(-\dfrac{3}{7}\right).\dfrac{5}{11}+\left(-\dfrac{5}{14}\right).\dfrac{5}{11}\) 8/\(\left(-\dfrac{1}{3}\right).\left(-\dfrac{15}{19}\right).\dfrac{38}{45}\)
4/\(\left(-\dfrac{5}{11}\right).\dfrac{7}{15}.\dfrac{11}{-5}.\left(-30\right)\) 9/\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+......+\dfrac{1}{19.20}\)
5/\(\left(-\dfrac{5}{9}\right).\dfrac{3}{11}+\left(-\dfrac{13}{18}\right).\dfrac{3}{11}\) 10/\(\dfrac{1}{9.10}-\dfrac{1}{8.9}-\dfrac{1}{7.8}-......-\dfrac{1}{2.3}-\dfrac{1}{1.2}\)
Câu 1 : Rút gọn
\(G=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{\left(m+1\right)!}{5!.\left(m-4\right)!.\left(m+1\right)}-\dfrac{m!}{12.3!.\left(m-4\right)!}\right]\)
Câu 2 : CMR
\(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}< 3\forall n\in N\)
Tính G=5E-2F, biết
\(E=\dfrac{7}{3}.\dfrac{37}{3^2}.\dfrac{1297}{3^4}...\dfrac{6^2+1}{3^2};F=\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{3^2}\right)\left(1+\dfrac{1}{3^4}\right)...\left(1+\dfrac{1}{3^{32}}\right)\)
phân tích đa thức \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\) thành nhân tử
a. \(\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)
b. \(\dfrac{1}{32}\left(16x^2+8x+1\right)=\dfrac{1}{32}\left(4x+1\right)^2\)
cách phân tích nào đúng a hay b giải thích vì sao biết rằng khi phân tích đa thức thành nhân tử chỉ nhận được một kết quả
phân tích đa thức \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\) thành nhân tử
a. \(\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)
b. \(\dfrac{1}{32}\left(16x^2+8x+1\right)=\dfrac{1}{32}\left(4x+1\right)^2\)
cách phân tích nào đúng a hay b giải thích vì sao biết rằng khi phân tích đa thức thành nhân tử chỉ nhận được một kết quả
Tính :
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0,25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
b) \(\left(0,001\right)^{-\dfrac{1}{3}}-2^{-2}.64^{\dfrac{2}{3}}-8^{-1\dfrac{1}{3}}\)
c) \(27^{\dfrac{2}{3}}-\left(-2\right)^{-2}+\left(3\dfrac{3}{8}\right)^{-\dfrac{1}{3}}\)
d) \(\left(-0,5\right)^{-4}-625^{0,25}-\left(2\dfrac{1}{4}\right)^{-1\dfrac{1}{2}}\)
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
c) \(=3^{3.\dfrac{2}{3}}-\dfrac{1}{\left(-2\right)^2}+\left(\dfrac{27}{8}\right)^{-\dfrac{1}{3}}\)
\(=9-\dfrac{1}{4}+\left(\dfrac{3}{2}\right)^{3.\dfrac{-1}{3}}\)
\(=9-\dfrac{1}{4}+\left(\dfrac{3}{2}\right)^{-1}\)
\(=9-\dfrac{1}{4}+\dfrac{2}{3}\)
\(=\dfrac{113}{12}\)
Cho mk hỏi :
tìm x,biết
a,\(-3\dfrac{1}{2}\)x -0,75-1,25x=\(\left(\dfrac{-1}{2}\right)^2:\dfrac{-3}{4}+\dfrac{1}{6}\)
b, \(\dfrac{-2}{3}-\left(\dfrac{x}{2}-75\%\right)=\left(\dfrac{3}{-4}-\dfrac{9}{8}\right)^2:\dfrac{-3}{32}-1\dfrac{1}{3}\)