Tìm các số hữu tỉ x,y thỏa mãn: 2x + 2016 = 2017y
Xin nhờ các bác giải giúp
Cho x,y thỏa mãn
2x^2+y^2+4=4x+2xy
Tính
A= x^2016y^2017-x^2017y^2016+36xy
http://imageshack.com/a/img922/350/bxYyla.png
Ta có
2x2 + y2 + 4 = 4x + 2xy
<=> (x2 - 4x + 4) + (x2 - 2xy + y2) = 0
<=> (x - 2)2 + (x - y)2 = 0
<=> x = y = 2
=> A = x2016.y2017 - x2017.y2016 + 36xy
= 22016.22017 - 22017.22016 + 36.2.2
= 144
Tìm các cặp số nguyên (x; y) thỏa mãn: x2 + xy -2016x - 2017y -2018 =0
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Tìm các cặp số nguyen (x; y) thỏa mãn: x2 +xy - 2016x -2017y -2018 =0
tìm x là số hữu tỉ thỏa mãn:
/x+2015/^2017+/x-2016/^2015=1
Tìm các số hữu tỉ x,y,z thỏa mãn : 3x=4y=5z và 2x + y - z = 43
Mình cần gấp lắm luôn đó help me
Ta có: \(3x=4y=5z\) => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x+y-z}{\frac{2}{3}+\frac{1}{4}-\frac{1}{5}}=\frac{43}{\frac{43}{60}}=60\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=60\\\frac{y}{\frac{1}{4}}=60\\\frac{z}{\frac{1}{5}}=60\end{cases}}\) => \(\hept{\begin{cases}x=60\cdot\frac{1}{3}=20\\y=60\cdot\frac{1}{4}=15\\z=60\cdot\frac{1}{5}=12\end{cases}}\)
Vậy ...
Thank bạn kết bạn đi
Ta có :
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\left(1\right)\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{2x}{40}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x}{40}=\frac{y}{15}=\frac{z}{12}=\frac{2x+y-z}{40+15-12}=\frac{43}{43}=1\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=15\\z=12\end{cases}}\)
Vậy.......................
Biết x,y là các số hữu tỉ thỏa mãn\(\dfrac{x}{4}=\dfrac{y}{7}\)và xy=112
Tính \(\left|2x+y\right|\)
Đặt \(\dfrac{x}{4}=\dfrac{y}{7}=k\)
⇒ \(\left\{{}\begin{matrix}x=4k\\y=7k\end{matrix}\right.\)
\(xy=28k^2=112\)
⇒ \(k^2=4\)
⇒ \(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
Còn lại bạn làm tiếp nha
Hai chữ số tận cùng của 51^51
2. Trung bình cộng của các giá trị của x thỏa mãn: (x - 2)^8 = (x - 2)^6
3. Số x âm thỏa mãn: 5^(x - 2).(x + 3) = 1
4. Số nguyên tố x thỏa mãn: (x - 7)^x+1 - (x - 7)^x+11 = 0
5. Tổng 3 số x,y,y biết: 2x = y; 3y = 2z và 4x - 3y + 2z = 36
6. Tập hợp các số hữu tỉ x thỏa mãn đẳng thức: x^2 - 25.x^4 = 0
7. Giá trị của x trong tỉ lệ thức: 3x+2/5x+7 = 3x-1/5x+1
8. Giá trị của x thỏa mãn: (3x - 2)^5 = -243
9. Tổng của 2 số x,y thỏa mãn: !x-2007! = !y-2008! < hoặc = 0
10. số hữu tỉ dương và âm x thỏa mãn: (2x - 3)^2 = 16
11. Tập hợp các giá trị của x thỏa mãn đẳng thức: x^6 = 9.x^4
12. Số hữu tỉ x thỏa mãn: |x|. |x^2+3/4| = X
có khùng hk vậy hùng tự đăng tự giải ls
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Tìm tập hợp các số hữu tỉ thỏa mãn ( x - 1,5) = 7,5 - (2x - 3)