Chứng minh rằng: x( x-2) + 3( x+1)( x- 3) + 20 > 0
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Chứng minh rằng a = 1/2 x 3 + 1/3 x 4 + 1,5 x 6 + ....... + 1 phần 19 x 20 < 1/2
chứng minh rằng
3x^2+3/x^3-1-x-1/x^2+x+1-2/x-1=0
chứng minh rằng x^4+2x^3-2x^2-10x+20 >0 với mọi giá trị của x
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0
Chứng minh rằng x^4 + 2x^3 - 2x^2 - 10x + 20 > 0 với mọi giá trị của x
cho x+y=1 và x y khác 0 . Chứng minh rằng :
x/y^3-1 - y/x^3-1 + 2(x-y)/x^2y^2+3 = 0Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
P=(x+1)(x+2)(x+3)(x+4)+1
a)chứng minh rằng P>=0 với mọi X
\([(x+1)(x+4)][(x+2)(x+3)]+1 \)
\(=(x^{2}+5x+4)((x^{2}+5x+6)+1 \)
\(Đặt h=x^{2}+5x+5\)
\(\Leftrightarrow\)\(P=(h-1)(h+1)+1\)
\(=h^{2}-1+1=h^{2}=(x^{2}+5x+5)^{2}\)\(\ge\)0\(\forall\)x
Với x ≥ 0 ⇒ x + 1, x + 2, x + 3, x + 4 đều > 0
⇒ P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Với -1 ≤ x ≤ -4 thì P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Với x < -4 ⇒ x + 1, x + 2, x + 3, x + 4 đều < 0
⇒ P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Vậy ∀ x thì