Bài 1.3. Tìm x biết sqrt(x) là số tự nhiên và A = (sqrt(x) - 4)/(sqrt(x) + 1) là số nguyên.
Bài 1. (2,0 điểm)
a) Cho biểu thức: \(A = \left( {\frac{{2\sqrt x + 1}}{{x + 2\sqrt x + 1}} + \frac{{1 - 2\sqrt x }}{{x - 1}}} \right).\left( {1 + \frac{1}{{\sqrt x }}} \right)\) với x>0;x≠1. Rút gọn biểu thức A và tìm các giá trị nguyên của x để A là số nguyên.
b) Cho biểu thức:
\(M = \left( {\sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( {\sqrt x + \sqrt {x + 1} - \sqrt {x + 2} } \right)\left( {\sqrt x - \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( { - \sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\)
Với x là số tự nhiên khác 0. Chứng minh M cũng là số tự nhiên.
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(\left(x\ge0;x\ne25\right)\)
a, Rút gọn P. Tìm các số thực x để P > -2.
b, Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên.
a, \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)
để P > -2
\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra
c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\) \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)
=> -căn x + 5 - 7 ⋮ căn x - 5
=> -(căn x - 5) - 7 ⋮ căn x - 5
=> 7 ⋮ x - 5 đoạn này dễ
a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\) đoạn này đúng rồi
\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)
\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)
Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)
Làm luôn cho đầy đủ =)
Bài 2: Cho biểu thức B= \(\frac{1}{\sqrt{x}-2}\)và A= \(\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)với \(x>0;x\ne4\)
a) Chứng minh A= \(\frac{4}{\sqrt{x}+2}\)
b) Tìm x biết A= \(\frac{2}{3}\)
c) Tìm số nguyên x để A.B có giá trị là số nguyên
d) Tìm số nguyên x để A có giá trị là số nguyên
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
Biết \(\xrightarrow[x->1]{lim}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\dfrac{\sqrt{a}}{b}\)
với a,b là số tự nhiên và \(\dfrac{a}{b}\) là phân số tối giản. Tính a-b
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).
Từ đó a = 5; b = 4 nên a - b = 1.
Bài 1: Tìm các số thực x để biểu thức \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\) là số nguyên.
Bài 2: Chứng minh rằng với mọi số tự nhiên n dương, phương trình sau không có nghiệm hữu tỷ:
\(x^2+2\left(n-1\right)\left(n+1\right)x+1-6n^3-13n^2-6n=0\)
Bài 3: Tìm các số hữu tỷ a và b thỏa mãn \(\sqrt{a\sqrt{7}}-\sqrt{b\sqrt{7}}=\sqrt{11\sqrt{7}-28}\)
Bài 2 : Cho A = \(\frac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\) và B = \(\frac{2x+6\sqrt{x}+7}{x\sqrt{x}+1}\)- \(\frac{1}{\sqrt{x}+1}\)( x lớn hơn hoặc bằng 0 )
a. Rút gọn A và tính giá trị của A khi x =4
b. Rút gọn M =A.B . Tìm M để M > 2
c. Tìm x để M là số nguyên
Bài 3 :
1) Cho A = \(\frac{2\sqrt{x}+5}{\sqrt{x}-1}\). Tìm x nguyên để biểu thức A nhận giá trị nguyên
2) Cho B = \(\frac{2\sqrt{x}}{x+4}\). Tìm GTLN của B
3) Cho C = \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}\). Tìm giá trị nguyên của x để C < 1
4) Cho D = \(\frac{2\sqrt{x}+7}{\sqrt{x}-1}\)( x > 0 ; x # 1 ) . Tìm số tự nhiên x để D có giá trị lớn nhất ? Tìm giá trị lớn nhất đó của D ?
Bài 4. Cho biểu thức M = \(\dfrac{\sqrt{x+2}}{2\sqrt{x}-3}\)với 𝑥 ≥ 0; 𝑥 ≠ 9 4 . Tìm gía trị nguyên của x để M có giá trị là một số tự nhiên
Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$
$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$
$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$
Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên
$\Rightarrow 3M-2\vdots 2M-1$
$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$
$\Rightarrow 2M-1\in\left\{\pm 1\right\}$
$\Rightarrow M=0;1$
$\Leftrightarrow x=4; 1$ (đều tm)
cho biểu thức A=(3\sqrt(x)+1)/(\sqrt(x)+2) và B=((2)/(\sqrt(x)+2)-(\sqrt(x)-5)/(x-4))-:(\sqrt(x)+1)/(\sqrt(x)-2) (x>=0; x khác 4)
a) tính giá trị biểu thức a khi x =64
b) rút gọn B
c) cho P=A-B tìm x để P có giá trị là số tự nhiên
a: Khi x=64 thì \(A=\dfrac{3\cdot8+1}{8+2}=\dfrac{25}{10}=\dfrac{5}{2}\)
b: \(B=\dfrac{2\sqrt{x}-4-\sqrt{x}+5}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+2}\)
cho biểu thức \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x\sqrt{x}-2x+\sqrt{x}}\)
a) Tìm x để A có nghĩa và rút gọn A
b) Tính giá trị của A khi \(x=8-2\sqrt{7}\)
c) Tìm số tự nhiên x sao cho \(\sqrt{x}\)là số nguyên và \(\frac{11}{A}\)là số nguyên
d) Tìm giá trị lớn nhất của biểu thức B= A-x
Mọi người giúp em với ạ :<