20.23:0.5+20.23:0.25+20.23x94
10.50+20.23 = ?
1/14.17+1/17.20+1/20.23+...+1/161.164
=1/3.(3/14.17+3/17.20+...+3/161.164)
=1/3.(1/14-1/17+1/17-1/20+...+1/161-1/164)
=1/3.(1/14-1/164)
=1/3.75/1148
=25/1148
giúp e với 1/20.23+1/23.26+1/26.29+....+1/77.80 < 1/9
Ta có \(\dfrac{1}{20.23}+\dfrac{1}{23.26}+...+\dfrac{1}{77.80}=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{80}\right)=\dfrac{1}{3}.\dfrac{3}{80}=\dfrac{1}{80}< \dfrac{1}{9}\)
Ta có:
\(\dfrac{1}{20.23}+\dfrac{1}{23.26}+\dfrac{1}{26.29}+...+\dfrac{1}{77.80}\)
=\(\dfrac{1}{3}\left[\left(\dfrac{1}{20}-\dfrac{1}{23}\right)+\left(\dfrac{1}{23}-\dfrac{1}{26}\right)+\left(\dfrac{1}{26}-\dfrac{1}{29}\right)+...+\left(\dfrac{1}{77}-\dfrac{1}{80}\right)\right]\)
= \(\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
=\(\dfrac{1}{3}.\dfrac{3}{80}\)
=\(\dfrac{1}{80}\)
Vì \(\dfrac{1}{80}\)>\(\dfrac{1}{9}\)
Nên \(\dfrac{1}{20.23}+\dfrac{1}{23.26}+\dfrac{1}{26.29}+...+\dfrac{1}{77.80}>\dfrac{1}{9}\)
Ta có:
\(\\ \dfrac{1}{20.23}+\dfrac{1}{23.26}+...+\dfrac{1}{77.80}\\ =\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\\ =\dfrac{1}{3}\left(\dfrac{3}{80}-\dfrac{1}{80}\right)\\ =\dfrac{1}{3}.\dfrac{3}{80}\\ =\dfrac{1}{80}\\ \)
Vậy \(\dfrac{1}{80}< \dfrac{1}{9}\)
CMR: 1/20.23+1/23.26+1/26.29+....+1/77.80 < 1/9
\(\frac{1}{20.23} +\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
= \(\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\frac{3}{80}\)
= \(\frac{1}{80}\) < \(\frac{1}{9}\)
⇒ \(\frac{1}{20.23} +\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\) < \(\frac{1}{9}\) (ĐPCM)
tính 1.3+2.5+3.6+4.7+........+20.23 (trình bày ra AI ĐÚNG MÌNH TICK)
Chứng minh 3^2/ 20.23+3^2/ 23.26+...+ 3^2/ 77.80< 1
Chứng minh: 3^2/20.23+3^2/23.26+...+3^2/77.80<1/8
Chứng minh rằng: 1/20.23 + 1/23.26 + 1/26.29 + ... + 1/77.80 <1/9
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80} \)
\(=\frac{1}{3}.(\frac{1}{20}-\frac{1}{23})+\frac{1}{3}.(\frac{1}{23}-\frac{1}{26})+...+\frac{1}{3}.(\frac{1}{77}-\frac{1}{80})\)
=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80})\)
=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{80})\)
=\(\frac{1}{3}.\frac{3}{80}\)
=\(\frac{1}{80}\)<\(\frac{1}{9}\)
Vậy tổng trên nhỏ hơn \(\frac{1}{9}\)
E= 1/1.3+1/3.6+1/6.9+.........+1/20.23
dau cham la dau nhan
E=1/1.3+1/3.6+1/6.9+.............+1/20.23
<=>E=1/1-1/3+1/3-1/6+1/6-1/9+...........+1/20-1/23
<=>E=1/1-1/23
<=>E=22/23
Kb và k mk nha mn.
Cho hai phan so 1/n va 1/n+1 (n thuoc z)chung to rang h cua hai phan so nay bang hieu cua chung