a)14*x=0
\(a,\frac{1}{5}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.........+\frac{1}{99}\)
Tính nhanh:
A=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
B=\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
A = \(\frac{-79}{90}\)
B = \(\frac{8}{9}\)
\(A=\frac{1}{5}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\)
A = 1/5 + [1/5.6 + 1/6.7 + ... + 1/12.13]
A = 1/5 + [1/5-1/6+1/6-1/7+...+1/12-1/13]
A = 1/5 + [1/5-1/13]
A = 1/5 + 8/65
A = 21/65
\(\frac{1}{3}-\frac{1}{12}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}-\frac{1}{110}=x-\frac{5}{13}\)
\(\Leftrightarrow\)\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{4}\)-\(\frac{1}{4}\)+\(\frac{1}{5}\)-....+\(\frac{1}{10}\)=x-\(\frac{113}{260}\)
\(\Leftrightarrow\)x-\(\frac{113}{260}\)=\(\frac{1}{10}\)
\(\Leftrightarrow\)x=\(\frac{139}{260}\)
Tìm x biết:
\(\frac{1}{3}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}=x-\frac{5}{18}\)
\(\frac{1}{3}-\left(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{7.8}\right)=x-\frac{5}{18}\)
\(x-\frac{5}{18}=\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(x-\frac{5}{18}=\frac{1}{3}-\frac{1}{3}+\frac{1}{8}\)
\(x-\frac{5}{18}=0+\frac{1}{8}\)
\(x-\frac{5}{18}=\frac{1}{8}\)
\(x=\frac{1}{8}+\frac{5}{18}\)
\(x=\frac{9}{72}+\frac{20}{72}\)
\(x=\frac{29}{72}\)
1/3 - 1/12 - 1/20 - 1/30 - 1/42 - 1/56 = x - 5/18
1/4 - 1/20 - 1/30 - 1/42 - 1/56 = x - 5/18
1/5 - 1/30 - 1/42 - 1/56 = x - 5/18
1/6 - 1/42 - 1/56 = x - 5/18
1/7 - 1/56 = x - 5/18
1/8 = x - 5/18
x=1/8+5/18
x= 29/72
Vậy : x = 29/72
Tính nhanh
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(C=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
Ta có \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Ta có \(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}\)
\(=\frac{5}{14}\)
Ta có \(C=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{1}{6}-\frac{1}{22}\)
\(=\frac{4}{33}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=\frac{1}{2}-\frac{1}{7}\)
\(B=\frac{5}{14}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(C=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(C=\frac{1}{6}-\frac{1}{22}=\frac{4}{33}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
Giups em zai mình nha
Bài 1: Không quy đồng hãy tính hợp lý.
a) A=\(\frac{-1}{20}\)+ \(\frac{-1}{30}\)+ \(\frac{-1}{42}\)+ \(\frac{-1}{56}\)+ \(\frac{-1}{72}\)+ \(\frac{-1}{90}\)
b) B=\(\frac{5}{2.1}\)+ \(\frac{4}{1.11}\)+ \(\frac{3}{11.2}\)+ \(\frac{1}{2.15}\)+ \(\frac{13}{15.4}\)
Bài 2: Không tính giá trị hãy so sánh.
a) \(\frac{1717}{8585}\)và \(\frac{1313}{5151}\) b)\(\frac{201201}{202202}\)và \(\frac{201201201}{202202202}\)
\(a,\Rightarrow A=-1\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{9.10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=\dfrac{-3}{20}\)
Bài 2:
\(a,\dfrac{1717}{8585}=\dfrac{1717:1717}{8585:1717}=\dfrac{1}{5};\dfrac{1313}{5151}=\dfrac{1313:101}{5151:101}=\dfrac{13}{51}\\ \dfrac{1}{5}=\dfrac{51}{255}< \dfrac{65}{255}=\dfrac{13}{51}\\ \Rightarrow\dfrac{1717}{8585}< \dfrac{1313}{5151}\)
\(b,\dfrac{201201}{202202}=\dfrac{201201:1001}{202202:1001}=\dfrac{201}{202}=\dfrac{201\cdot1001001}{202\cdot1001001}=\dfrac{201201201}{202202202}\)
b1 ko bit
b2
1717/8585 < 1313/5151 201201/202202 > 201201201/202202202
( vì khi có tử số và mẫu số lớn hơn số kia thì số đó bé hơn)
A=\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{9900}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{99\cdot100}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{4}-\frac{1}{100}\)
\(A=\frac{6}{25}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\\ =\frac{24}{100}=\frac{6}{25}\)
A=\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Ta có:
A = \(\frac{1}{5.6}\)+ \(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
Bạn xem lời giải của mình nhé:
Giải:
\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\\ =\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\\ =\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\\ =\frac{1}{5}-\frac{1}{12}=\frac{12-5}{60}=\frac{7}{60}\)
Chúc bạn học tốt!
A=\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
=1/5 - 1/6+1/6 -1/7+1/7-1/8+....+1/11 - 1/12
= 1/5 - 1/12
=12/60 -5/60
= 7/60