Cho △ABC, kẻ BM vuông góc với AC, kẻ CI vuông góc với AB. Chứng minh △ABM đồng dạng △ACI
Cho tam giác ABC, trên cạnh AC lấy điểm M sao cho ABM = ACB. Từ A kẻ AH vuông góc với BC (H thuộc BC), AK vuông góc với BM (K thuộc BM).
a) Chứng minh tam giác ABM đồng dạng với tam giác ACB.
b) Chứng minh: AB.AK = AM.AH.
c) Chứng minh: Diện tích tam giác AHB gấp 4 lần diện tích tam giác AKM (biết AB = 3cm, AC = 6cm).
Cho tam giác ABC cân tại A, kẻ BM vuông góc với AC (M thuộc AC), kẻ CN vuông góc với AB (N thuộc AB).
A) chứng minh: tam giác ABM = tam giác ACN và BM=CN
B) Biết góc ABM = 30 độ. chứng minh tam giác ABC đều.
các bạn giúp mình với.
Cho tam giác ABC vuông tại A, phân giác CI. Qua C kẻ đường thẳng song song với AB, qua B kẻ đường thẳng song song với CI. Chúng cắt nhau tại M. Từ M hạ MH vuông góc với BC, từ C kẻ CN vuông góc với BM. Chứng minh tam giác BIC đồng dạng với tam giác NMH
Cho tam giác ABC có CA = CB = 13cm, AB = 10cm. Kẻ tia phân giác CI của
C (I AB).
a) Chứng minh: ABC cân
b) Chứng minh ACI BCI từ đó suy ra CIA CIB
c) Chứng minh: CI AB.
d) Tính độ dài IC.
e) Kẻ IH vuông góc với AC (H AC), kẻ IK vuông góc với BC (K BC). So sánh
IH và IK.
Cho tam giác ABC vuông tại A có AB=6cm BC = 10cm đường trung tuyến BM qua C kẻ đường vuông góc với BM tại D
a, chứng minh tam giác ABM đồng dạng tam giác DCM
b, tính độ dài đoạn thẳng CD
c, qua A kẻ đường song song BC cắt tia BM tại N chứng minh góc MAD = góc MNA
Cho tam giác ABC cân tại A, trung tuyến AM. Trên đoạn BM lấy N sao cho góc MAN = goác ABM, kẻ AH vuông góc với tia BM tại H, kẻ CK vuông góc với BM tại K, kẻ tia CI vuông góc với tia AN tại I. Chứng minh:
a) AH = CK
b) góc CNK = góc CNI
c) góc MAN = góc NCB
Cho tam giác ABC có ba góc nhọn, đường cao BH. Kẻ HM vuông góc với
AB, HN vuông góc với BC. (M, N lần lượt thuộc đo AB , BC )
a) Chứng minh: BM.AB = BN.BC
b) Chứng minh: tam giác BNM đồng dạng với tam giác BAC
c) kẻ CI vuông góc với AB tại I, chứng minh góc AIH = góc ACB
d) Chứng minh MN đi qua trung điểm của HI
Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC (H thuộc BC). Kẻ HM vuông góc với AB (M thuộc AB). Kẻ HN vuông góc với AC (N thuộc AC). Biết AB= 13 cm; AC= 15 cm; AH= 12 cm
a, Chứng minh tam giác ANH đồng dạng với tam giác AHC
b, Tính HC, AN
c, Chứng minh AM.AB=AN.AC
b, Tính diện tích tam giác AMN
a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có
góc NAH chung
Do đó: ΔANH\(\sim\)ΔAHC
b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
refer
a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có
AM chung
ME=MH
Do đó: ΔAEM=ΔAHM
b: Xét ΔBHE có
BM là đường cao
BM là đường trung tuyến
Do đó: ΔBHE cân tại B
Xét ΔAEB và ΔAHB có
AE=AH
EB=HB
AB chung
Do đó: ΔAEB=ΔAHB
Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900
hay AE⊥EB
tham khảo
a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có
AM chung
ME=MH
Do đó: ΔAEM=ΔAHM
b: Xét ΔBHE có
BM là đường cao
BM là đường trung tuyến
Do đó: ΔBHE cân tại B
Xét ΔAEB và ΔAHB có
AE=AH
EB=HB
AB chung
Do đó: ΔAEB=ΔAHB
Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900
hay AE⊥EB
Cho ∆ABC từ B kẻ đường vuông góc vói AC tại M từ C kẻ đường vuông góc với AB tại N gọi i là giao điểm của BM và CN biết BI = CI chứng minh rằng ∆ABC là tam giác cân
Xét ΔICB có IB=IC
nên ΔIBC cân tại I
Suy ra: \(\widehat{NCB}=\widehat{MBC}\)
Xét ΔNCB vuông tại N và ΔMBC vuông tại M có
BC chung
\(\widehat{NCB}=\widehat{MBC}\)
Do đó: ΔNCB=ΔMBC
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)
hay ΔABC cân tại A