Tìm n để:n^2+n+4 chia hết cho n+1
Tìm n để:n^2+n+4 chia hết cho n+1
Ta có:
\(n^2+n+4=\left(n^2+n\right)+4=n\left(n+1\right)+4\)
Để \(\left(n^2+n+4\right)⋮\left(n+1\right)\) thì \(4⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}\)
n2+n+4 ⋮ n+1
\(\Rightarrow\) n. n + n.1 +4 ⋮ n+1
\(\Rightarrow\) n . ( n+1) + 4 \(⋮\) n+1
Để n . ( n+1) +4 \(⋮\) 4 thì 4 \(⋮\) n+1 { Vì n . ( n+1) \(⋮\) 4}
\(\Rightarrow\) n +1 \(\in\) ( 4 )
\(\Rightarrow\) n+ 1 \(\in\) { \(\pm\) 1; \(\pm\)2; \(\pm\) 4}
\(\Rightarrow\) n \(\in\) { 0; -2 ; 1 ; -3 ; 3 ;-5}
tìm n để:n mũ 2+2.n-3 chia hết cho n-1
các cậu đừng chúc tớ ngủ ngon vì các cậu đã làm tớ thao thức
tìm n là số tự nhiên để:
n^2+n chia hết cho n+1
Tìm số nguyên n để:n+5 chia hết cho n-2
Ta có:
n+5 chia hết cho n-2
Mà n-2 chia hết cho n-2
=>(n+5)-(n-2) chia hết cho n-2
=>7 chia hết cho n-2
=> n-2 thuộc {-7;-1;1;7}
=>n thuộc {-5;1;3;9}
tìm số tự nhiên x để:n+13 chia hết cho n2+1
Tìm giá trị nhỏ nhất của số nguyên n để:n2+3n-13 chia hết cho n+3.
Ta có: \(n^2+3n-13=n\left(n+3\right)-13\)
Mà \(n\left(n+3\right)\) chia hết cho n+3
Nên để \(n^2+3n-13\) chia hết thì \(-13\) chia hết cho n(n+3)
\(\Rightarrow n\left(n+3\right)\inƯ\left(13\right)\)
\(n\left(n+3\right)=-13;n\left(n+3\right)=-1;n\left(n+3\right)=1;n\left(n+3\right)=13\)
Ko có TH nào là số nguyên coi lại đề đi bạn
n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3 Mà n(n+3) chia hết cho n+3
=>13 chia hết cho n+3 Mà n thuộc Z
=>n+3 thuộc {-13, -1, 1, 13}
=>n thuộc {-16, -4, -2, 10}
Mà n là giá trị nhỏ nhất
=>n=-16
Vậy n=-16
1) Ta có: \(2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
2) Ta có: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
nên \(5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Vậy: \(n\in\left\{4;2;8;-2\right\}\)
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63