Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KYAN Gaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2021 lúc 22:11

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

Nguyễn Lê Phước Thịnh
22 tháng 4 2021 lúc 22:12

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

Hehegivaycau^^
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2022 lúc 10:12

\(\dfrac{x-1}{x-2}+\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow x^2+x-2+5x-10=12+x^2-4\)

\(\Leftrightarrow6x-12=8\)

=>6x=20

hay x=10/3(nhận)

namperdubai2
3 tháng 3 2022 lúc 10:13

ILoveMath đã xóa
ILoveMath
3 tháng 3 2022 lúc 10:16

ĐKXĐ:\(x\ne\pm2\)

\(\dfrac{1-x}{2-x}+\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{12}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\\ \Leftrightarrow\dfrac{x^2+x-2+5x-10-12-x^2+4}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow6x-20=0\\ \Leftrightarrow x=\dfrac{10}{3}\left(tm\right)\)

Kami no Kage
Xem chi tiết
Nguyển Đình Lâm 202
13 tháng 3 2016 lúc 7:51

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

nguyenvietbach
Xem chi tiết
Tâm Lương Thiện
Xem chi tiết
Trương Huy Hoàng
24 tháng 1 2021 lúc 17:21

(4x - 3)2 - (2x + 1)2 = 0

\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0

\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

3x - 12 - 5x(x - 4) = 0

\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0

\(\Leftrightarrow\) -5x2 + 23x - 12 = 0

\(\Leftrightarrow\) 5x2 - 23x + 12 = 0

\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0

\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0

\(\Leftrightarrow\) (x - 4)(5x - 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy ...

(8x + 2)(x2 + 5)(x2 - 4) = 0

\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0

Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x

\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt!

Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 18:08

a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)

\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)

b) Ta có: \(3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)

c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)

mà \(2>0\)

và \(x^2+5>0\forall x\)

nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)

Nguyễn Thị Kim Chi
Xem chi tiết
Nguyễn Linh Chi
24 tháng 8 2019 lúc 16:51

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

Chung Quốc Điền
Xem chi tiết
Shop Fpt
25 tháng 4 2020 lúc 10:26

\(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\) (1)

đkxđ: \(x\ne\pm2\)

(1)\(\Leftrightarrow\frac{\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{-5\left(x+2\right)+12+x}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x-2=-5\left(x+2\right)+12+x\)

\(\Leftrightarrow5x=4\)

\(\Leftrightarrow x=\frac{5}{4}\)(thỏa mãn đkxđ)

Nhan Ly
Xem chi tiết
Bùi Đức Anh
21 tháng 2 2018 lúc 15:47

Ta có \(\frac{12}{x^2+2x+4}-\frac{5}{x^2+2x+5}=2\)

<=>\(12\left(x^2+2x+5\right)-5\left(x^2+2x+4\right)=2\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow12x^2+24x+60-5x^2-10x-20=2x^4+8x^3+26x^2+36x+40\)

\(\Leftrightarrow7x^2+14x+40=2x^4+8x^3+26x^2+36x+40\)

\(\Leftrightarrow2x^4+8x^3+19x^2+22x=0\)

\(\Leftrightarrow x\left(2x^3+8x^2+19x+22\right)=0\)

\(\Leftrightarrow x\left(2x^3+4x^2+4x^2+8x+11x+22\right)=0\)

\(\Leftrightarrow x\left[2x^2\left(x+2\right)+4x\left(x+2\right)+11\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(2x^2+4x+11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)

Vậy PT có nghiệm duy nhất S ={0 ; -2 }  vì(  \(2x^2+4x+11\ne0\))

Huỳnh Thị Thanh Ngân
Xem chi tiết

Sửa đề: \(\left(x-1\right)^2-\left(3x+2\right)\left(x-12\right)=\left(x^2+1\right)\left(x-2\right)-x^2\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(3x^2-36x+2x-24\right)=x^3-2x^2+x-2-x^2\)

=>\(x^3-3x^2+3x-1-3x^2+34x+24=x^3-3x^2+x-2\)

=>\(x^3-6x^2+37x+23-x^3+3x^2-x+2=0\)

=>\(-3x^2+36x+25=0\)

=>\(x=\dfrac{18\pm\sqrt{399}}{3}\)