Tìm x
a. A=\(\frac{3}{x-1}\)
b.B=\(\frac{x-2}{x+3}\)
cho biết : A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x+2}\)
a, tìm đkxđ của A và rút gọn A
b, tính giá trị của A khi x=3
c, tìm giá trị nguyên của x để A có giá trị nguyên
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
Tìm x : \(\frac{2x-\frac{x-1}{2}}{3}-\frac{\frac{x+1}{2}-\frac{2x-3}{3}}{2}=\frac{\frac{x-1}{2}-1}{3}-\frac{x-3}{4}\)
Tìm các số A, B, C để có: \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
cho A=\(\left(\frac{2}{x^2-3x}-\frac{1}{x-3}\right)\cdot\frac{x^2-6x+9}{x-2}\)
a,Rút gọn A
b,tìm x để A>0
c,khi x>0,x khác 3 hãy tìm MinP=A+3x
Tìm x: \(x-\frac{\frac{x}{2}-\frac{x}{3}}{4}-\frac{x}{6}=\frac{2\left(1+x\right)}{3}-\frac{\frac{x}{3}+\frac{1-x^7}{4}}{2}\)
Tìm x: \(\frac{3\frac{1}{2}x-4}{6}+\frac{2+\frac{1}{4}x}{3}=1\frac{1}{4}x\left(x-1\right)-\frac{7-\frac{3}{4}x}{3}\)
1. A=\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
a) Tìm tập xác định và rút gọn A
b) x = ? để A = 3
2. Tìm nghiệm nguyên phương trình: x - xy + 2y = 3
Tìm x: \(\frac{\frac{1}{2}-\frac{x+2}{3}}{2}-\frac{2}{3}\left(x+1\right)=\frac{1}{4}\left(1-2x\right)-\frac{\frac{1}{3}-\frac{1-x}{2}}{2}\)
<=> \(\frac{-2x-1}{12}\)-\(\frac{2x+2}{3}=\frac{1-2x}{4}-\frac{3x-1}{12}\)
<=>\(\frac{-2x-1-8x-8-3+6x+3x-1}{12}=0\)
<=> -x-13=0=> x=-13
\(\frac{\frac{1}{2}-\frac{x+2}{3}}{2}-\frac{2}{3}\left(x+1\right)=\frac{1}{4}\left(1-2x\right)-\frac{\frac{1}{3}-\frac{1-x}{2}}{2}\)
<=>\(6.\left(\frac{1}{2}-\frac{x+2}{3}\right)-8.\left(x+1\right)=3\left(1-2x\right)-6.\left(\frac{1}{3}-\frac{1-x}{2}\right)\)
<=>3-2.(x+2)-8x-8=3-6x-2+3.(1-x)
<=>3-2x-4-8x-8=3-6x-2+3-3x
<=>-10x-9=-9x+4
<=>x=-13
TÌm a,b,c : \(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)
\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)a}{\left(x-2\right)\left(x-1\right)x}+\frac{\left(x-2\right)xb}{\left(x-2\right)\left(x-1\right)x}+\frac{\left(x-1\right)xc}{\left(x-2\right)\left(x-1\right)x}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)a+\left(x-2\right)xb+\left(x-1\right)xc}{\left(x-2\right)\left(x-1\right)x}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
\(\Leftrightarrow\frac{a\left(x^2-3x+2\right)+b\left(x^2-2x\right)+c\left(x^2-x\right)}{x^3-3x^2+2}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
\(\Leftrightarrow\frac{x^2\left(a+b+c\right)-x\left(3a+2b+c\right)+2a}{x^3-3x^2+2}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)
Sử dụng đồng nhất thức ta được: \(\begin{cases}x^2\left(a+b+c\right)=9\\x\left(3a+2b+c\right)=16\\2a=4\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=3\\c=4\end{cases}\)