Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

TÌm a,b,c : \(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)

Bùi Hà Chi
26 tháng 10 2016 lúc 17:42

\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)a}{\left(x-2\right)\left(x-1\right)x}+\frac{\left(x-2\right)xb}{\left(x-2\right)\left(x-1\right)x}+\frac{\left(x-1\right)xc}{\left(x-2\right)\left(x-1\right)x}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)a+\left(x-2\right)xb+\left(x-1\right)xc}{\left(x-2\right)\left(x-1\right)x}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)

\(\Leftrightarrow\frac{a\left(x^2-3x+2\right)+b\left(x^2-2x\right)+c\left(x^2-x\right)}{x^3-3x^2+2}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)

\(\Leftrightarrow\frac{x^2\left(a+b+c\right)-x\left(3a+2b+c\right)+2a}{x^3-3x^2+2}=\frac{9x^2-16x+4}{x^3-3x^2+2}\)

Sử dụng đồng nhất thức ta được: \(\begin{cases}x^2\left(a+b+c\right)=9\\x\left(3a+2b+c\right)=16\\2a=4\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=3\\c=4\end{cases}\)


Các câu hỏi tương tự
Phương
Xem chi tiết
Trân Vũ
Xem chi tiết
Phương
Xem chi tiết
๖ۣۜTina Ss
Xem chi tiết
Phương
Xem chi tiết
Phạm Khánh Ngọc
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Trần Thị Trà My
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết