Cho a < b. Chứng minh – 3a + 2023 > – 3b + 2023
Tìm giá trị nhỏ nhất của A = a\(^2\) + ab + b\(^2\) - 3a - 3b + 2023
\(A=\left(a^2+\dfrac{b^2}{4}+\dfrac{9}{4}+ab-3a-\dfrac{3}{2}b\right)+\dfrac{3}{4}\left(b^2-2b+1\right)+2020\)
\(A=\left(a+\dfrac{b}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2020\ge2020\)
\(A_{min}=2020\) khi \(\left(a;b\right)=\left(1;1\right)\)
Cho A = 1 + 2^2 + 2^4 + 2^6 + ... + 2^2022 và B = 2^2023. Chứng minh 3A và 2B là hai số tự nhiên liên tiếp.
Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)
Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)
\(=2^{2024}-1\)
Mà \(2B=2^{2024}\)
Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
Mình cần gấp nha
chứng minh rằng (2023^91+2023^90+2023^89) chia hết cho 13
Mình đùa chút nhé:
Cần j chứng minh, thấy nó đúng là đc mà!
mình nghĩ c/m là cái điều đấy nó đã đúng sẵn rồi
nên chắc chẳng cần c/m đâu nhỉ =)
Cho ,a b là các số tự nhiên. Chứng minh rằng nếu 7 a+2b và 31a+ 9b cùng chia hết cho 2023 thì a và b cùng chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
Do đó: 9(7a+2b)-2(31a+9b) chia hết cho 2023
=>63a+18b-62a-18b chia hết cho 2023
=>a chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
=>31(7a+2b)-7(31a+9b) chia hết cho 2023
=>-b chia hết cho 2023
=>b chia hết cho 2023
Cho ,a b là các số tự nhiên. Chứng minh rằng nếu 7 a+2b và 31a+ 9b cùng chia hết cho 2023 thì a và b cùng chia hết cho 2023.
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
Do đó: 9(7a+2b)-2(31a+9b) chia hết cho 2023
=>63a+18b-62a-18b chia hết cho 2023
=>a chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
=>31(7a+2b)-7(31a+9b) chia hết cho 2023
=>-b chia hết cho 2023
=>b chia hết cho 2023
Cho A= 1 +2^2+2^4+2^6+...+2^2023 và B =2^2023. Chứng minh 3 nhân A và 2 nhân B là hai số tự nhiên liên tiếp. (Lưu ý: ^ là số mũ)
Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)
\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)
=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)
=>\(3A=2^{2024}-1\)
mà \(2\cdot B=2^{2024}\)
nên 3A và 2B là hai số tự nhiên liên tiếp
cho a/b=c/d
chứng minh (a + 2c) (b+2023 d) = (a+2023 c)(b+2d)
Đặt a/b=c/d=k
=>a=bk; c=dk
(a+2c)(b+2023d)
=(bk+2dk)(b+2023d)
=k(b+2d)(b+2023d)
=(bk+2023kd)(b+2d)
=(a+2023c)(b+2d)
cho a/b=c/d
chứng minh (a + 2c) (b+2023 d) = (a+2023 c)(b+2d)
Đặt a/b=c/d=k
=>a=bk; c=dk
(a+2c)(b+2023d)
=(bk+2dk)(b+2023d)
=k(b+2d)(b+2023d)
=(bk+2023kd)(b+2d)
=(a+2023c)(b+2d)
Cho A =3/2^2+8/3^2+15/4^2+…+2023^2-1/2023^2
Chứng minh A không phải là số tự nhiên