Cho a,b,x,y thuộc z mà.
a+b=x+y.
a^2+b^2=x^2+y^2.
CMR a^2003+b^2003=x^2003+y^2003
cho x,y,a,b là số thực thỏa mãn x^2 + y^2 =1 . C/m : x^2006/a^2003 + y^2006/b^2003 = 2/(a+b)^2003
Cho các số a, b, c khác 0. Tính giá trị của biểu thức : \(A=x^{2003}+y^{2003}+z^{2003}\)
Biết \(x,y,z\) thỏa mãn điều kiện : \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
=\(\left(\dfrac{x^2}{a^2}-\dfrac{x^2}{a^2+b^2+c^2}\right)+\left(\dfrac{y^2}{b^2}-\dfrac{y^2}{a^2+b^2+c^2}\right)\)+\(\left(\dfrac{z^2}{c^2}-\dfrac{z^2}{a^2+b^2+c^2}\right)=0\)
=\(x^2.\dfrac{b^2+c^2}{a^2+b^2+c^2}+y^2.\dfrac{a^2+c^2}{a^2+b^2+c^2}+z^2.\dfrac{a^2+b^2}{a^2+b^2+c^2}=0\)
Vì \(a,b,c\) \(\ne\)0 nên dấu "=" xảy ra khi \(x=y=z=0\)
\( \Rightarrow\)\(A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)
Chúc Bạn Học Tốt !!!
Cho \(a,b,c\ne0\).Tính giá trị của D = x2003 + y2003 + z2003
Biết x,y,z thỏa mãn\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Bài 1 : Tìm x,y thuộc Z sao cho:
a) ( x + 1 ) + ( x + 3 ) + ( x + 5 ) + .... + ( x + 99 ) = 0
b) \(|x-8|+|y+2|=2\)
c) x + ( x + 1 ) + ( x + 2 ) +....+ 2003 = 2003
\(x+\left(x+1\right)+....+2003=2003\Leftrightarrow x+\left(x+1\right)+....+2002=0\)
\(\Leftrightarrow\left(2002+x\right)\left(2002-x+1\right)=0\Leftrightarrow\left(2002+x\right)\left(2003-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2002\\x=2003\end{cases}}\)
\(\left(x+1\right)+\left(x+3\right)+.....+\left(x+99\right)=0\)
\(\Leftrightarrow45x+\left(1+3+...+99\right)=0\Leftrightarrow45x+\frac{100.45}{2}=0\Leftrightarrow x+50=0\Leftrightarrow x=-50\)
Trl
-Bạn kia làm đúng r nhé !~ :>
Học tốt
nhé bạn ~
tìm x,y,z thuộc 3 điều kiện :(1) |x|=y-2003 ; (2)|y|=z-2003;(3)|z|=x-2003
Chung minh đa thuc sau chia het cho mot so
a)n(2n-3)-2n(n+1) luon chia het cho 5 voi n thuoc Z
b)(n^2+3n-1)(n+2)-n^3+2 chia het cho 5
c)(xy-1)(x^2003+y^2003)-(xy+1)(x^2003-y^2003) chia het cho 2
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
CMR vs mọi n thì :
a, ( n2 + 3n -1 ) ( n + 2 ) - n3 + 5 ⋮ 5
b, ( 6n + 1 ) ( n + 5 ) - ( 3n + 5 ) ( 2n - 1 ) ⋮ 2
c, xn ( x = 1 ) + xn ( y - 1 ) ⋮ 13 ( x,y ∈ N, x + y ⋮ 13 )
d, ( 2x2 + x ) ( 2y2 - y ) - xy ( 4 xy - 1 ) ⋮ 2
e, ( xy - 1 ) ( x2003 + y2003 ) - ( xy + 1 ) ( x2003 - y2003 )
a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)
\(=5n^2+5n+3⋮̸5\)
b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)
\(=-2\left(x^2y-xy^2\right)⋮2\)
Cho các số x,y,z thỏamãn x/2001 = y/2002 = z/2003
a, CMR (x-z)^3 = 8.(x-y)^2 = (y-z)
b, Cho biết thêm x/25 + y/3 = z/1999. Tính x, y, z
TÌM x,y,z thuộc Q biết
a, /x+\(\frac{13}{17}\)/+ / y+\(\frac{2019}{2018}\)/ +/ z-2007/=0
b, 2003 -/x-2003/ =x
a) \(\left|x+\frac{13}{17}\right|+\left|y+\frac{2019}{2018}\right|+\left|z-2007\right|=0\)
Ta có:
\(\left\{{}\begin{matrix}\left|x+\frac{13}{17}\right|\ge0\\\left|y+\frac{2019}{2018}\right|\ge0\\\left|z-2007\right|\ge0\end{matrix}\right.\forall x,y,z.\)
\(\Rightarrow\left|x+\frac{13}{17}\right|+\left|y+\frac{2019}{2018}\right|+\left|z-2007\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+\frac{13}{17}=0\\y+\frac{2019}{2018}=0\\z-2007=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-\frac{13}{17}\\y=0-\frac{2019}{2018}\\z=0+2007\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{13}{17}\\y=-\frac{2019}{2018}\\z=2007\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{-\frac{13}{17};-\frac{2019}{2018};2007\right\}.\)
Chúc bạn học tốt!