Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thị Việt Hà
Xem chi tiết
Hoàng Luke
Xem chi tiết
Nguyễn Nhã Hiếu
18 tháng 8 2017 lúc 12:15

\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

=\(\left(\dfrac{x^2}{a^2}-\dfrac{x^2}{a^2+b^2+c^2}\right)+\left(\dfrac{y^2}{b^2}-\dfrac{y^2}{a^2+b^2+c^2}\right)\)+\(\left(\dfrac{z^2}{c^2}-\dfrac{z^2}{a^2+b^2+c^2}\right)=0\)

=\(x^2.\dfrac{b^2+c^2}{a^2+b^2+c^2}+y^2.\dfrac{a^2+c^2}{a^2+b^2+c^2}+z^2.\dfrac{a^2+b^2}{a^2+b^2+c^2}=0\)

\(a,b,c\) \(\ne\)0 nên dấu "=" xảy ra khi \(x=y=z=0\)

\( \Rightarrow\)\(A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

Chúc Bạn Học Tốt !!!

Nguyễn Linh Chi
Xem chi tiết
Đỗ Nguyễn Quỳnh Anh
Xem chi tiết
shitbo
14 tháng 2 2020 lúc 10:36

\(x+\left(x+1\right)+....+2003=2003\Leftrightarrow x+\left(x+1\right)+....+2002=0\)

\(\Leftrightarrow\left(2002+x\right)\left(2002-x+1\right)=0\Leftrightarrow\left(2002+x\right)\left(2003-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2002\\x=2003\end{cases}}\)

Khách vãng lai đã xóa
shitbo
14 tháng 2 2020 lúc 10:38

\(\left(x+1\right)+\left(x+3\right)+.....+\left(x+99\right)=0\)

\(\Leftrightarrow45x+\left(1+3+...+99\right)=0\Leftrightarrow45x+\frac{100.45}{2}=0\Leftrightarrow x+50=0\Leftrightarrow x=-50\)

Khách vãng lai đã xóa
PTN (Toán Học)
14 tháng 2 2020 lúc 10:43

Trl

-Bạn kia  làm đúng r nhé !~ :>

Học tốt 

nhé bạn ~

Khách vãng lai đã xóa
Trịnh Mai Phương
Xem chi tiết
Hakai Nguyen
Xem chi tiết
Thiên Hàn
28 tháng 8 2018 lúc 8:21

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

Wanna One
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2022 lúc 10:29

a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)

\(=5n^2+5n+3⋮̸5\)

b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)

\(=-2\left(x^2y-xy^2\right)⋮2\)

NGUYEN THAO LINH KHUAT
Xem chi tiết
Qanhh pro
Xem chi tiết
Vũ Minh Tuấn
1 tháng 11 2019 lúc 18:49

a) \(\left|x+\frac{13}{17}\right|+\left|y+\frac{2019}{2018}\right|+\left|z-2007\right|=0\)

Ta có:

\(\left\{{}\begin{matrix}\left|x+\frac{13}{17}\right|\ge0\\\left|y+\frac{2019}{2018}\right|\ge0\\\left|z-2007\right|\ge0\end{matrix}\right.\forall x,y,z.\)

\(\Rightarrow\left|x+\frac{13}{17}\right|+\left|y+\frac{2019}{2018}\right|+\left|z-2007\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+\frac{13}{17}=0\\y+\frac{2019}{2018}=0\\z-2007=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-\frac{13}{17}\\y=0-\frac{2019}{2018}\\z=0+2007\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{13}{17}\\y=-\frac{2019}{2018}\\z=2007\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{-\frac{13}{17};-\frac{2019}{2018};2007\right\}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa