Cho phương trình x^2-2(m+1)+m^2+3=0(m là tham số)Tìm giá trị của m để phương trình có 2 nghiệm x1 x2 thỏa mãn Giúp mik với 😢
Cho phương trình: x2 - 6x + m - 3 = 0 (m là tham số). Tìm giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: (x1 - 2)(x22 - 5x2 + m - 5) = -6
ai giải giúp mình với ạ☹
cho phương trình x^2-mx+m-1=0(m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 và thỏa mãn x1^2+x2^2=x1+x2
\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)
Phương trình có hai nghiệm phân biệt :
\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)
Theo vi ét :
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)
Vậy \(m=2\)
Cho phương trình : x2+(m-1)x-m2-2=0 (m là tham số).Tìm giá trị của m để phương trình có hai nghiệm trái dấu thỏa mãn 2|x1|-|x2|=4(biết x1<x1)
cho phương trình x^2-2(m+2)x+3m+2=0 (m là tham số). tìm tất cả giá trị của m để phương trình có 2 nghiệm x1,x2 thỏa mãn x2-2x1=3
\(\Delta=\left(2m+4\right)^2-4\left(3m+2\right)\)
\(=4m^2+16m+16-12m-8\)
\(=4m^2+4m+8\)
\(=\left(2m+1\right)^2+7>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=3m+2\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\-2x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2m+1\\x_1+x_2=2m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2}{3}m+\dfrac{1}{3}\\x_2=2m+4-\dfrac{2}{3}m-\dfrac{1}{3}=\dfrac{4}{3}m+\dfrac{11}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=3m+2\)
nên \(\left(\dfrac{2}{3}m+\dfrac{1}{3}\right)\left(\dfrac{4}{3}m+\dfrac{11}{3}\right)=3m+2\)
\(\Leftrightarrow m^2\cdot\dfrac{8}{9}+\dfrac{22}{9}m+\dfrac{4}{9}m+\dfrac{11}{9}=3m+2\)
\(\Leftrightarrow m^2\cdot\dfrac{8}{9}-\dfrac{1}{9}m-\dfrac{7}{9}=0\)
\(\Leftrightarrow8m^2-m-7=0\)
\(\Leftrightarrow\left(m-1\right)\left(8m+7\right)=0\)
=>m=1 hoặc m=-7/8
x² - 2(m - 2)x + m² - 5m - 4 = 0 (1) m là tham số a giải phương trình 1 với M = 1 b tìm tất cả các giá trị của tham số m để phương trình 1 có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 bình + X2 bình bằng -3 x1 x2 - 4
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
Cho phương trình: x^2 -6x +m+1=0(1)( với m là tham số )
a, giải phương trình (1) khi m=4
b, Gọi hai nghiệm của phương trình (1) là x1 ;x2. Tìm giá trị của m để x1; x2 thỏa mãn x1^2 +x2^2=3(x1+ x2)
Làm câu b)
Để phương trình có hai nghiệm phân biệt:
\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)
Áp dụng định lí Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)
Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)
Từ 1, 2 ta có:
\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)
Vậy ...
Cho phương trình x2 -2(m-2) +2m -5 =0 với m là tham số
a) Chứng minh rằng phương trình có nghiệm với mọi giá trị của m
b) Tìm m để phương trình có 2 nghiệm x1 , x2 thỏa mãn x1 - 3x2 = m
Cho phương trình x 2 + 2 m − 1 x + 1 − 2 m = 0 (với m là tham số).
a) Giải phương trình với m= 2.
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
c) Tìm các giá trị của m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 .
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
Cho phương trình x^2 -2mx+4m-4=0 (1) , m là tham số
a)Gia phương trình với m=1
b)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện x1^2 +2mx2 -8m+5=0