Tìm x biết:
\(72-\left(x^2-10x+25\right)=x^2-25\)
\(62-\left(x-5\right)^2=x^2-5^2\)
Phân tích đa thức thành nhân tử: \(\left(x+5\right)^2+4\left(x+5\right)\left(x-5\right)+4\left(x^2-10x+25\right)=0\)
\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)
Rút gọn biểu thức:
\(A=\left|\frac{\left|y-x\right|}{\left|xy\right|}\right|+\left|\frac{y+x}{xy}-\frac{2}{z}\right|+\frac{\left|y-x\right|}{\left|xy\right|}+\frac{y+x}{xy}+\frac{2}{z}\)
với \(x>5\); \(y=\frac{x^2-25}{x+\frac{10x+25}{x}}\); \(z=\frac{x^2-25}{x+\frac{15x+25}{x-5}}\)
\(\left(1\right)\sqrt{x^2-9}-2\sqrt{x-3}=0\)
\(\left(2\right)\sqrt{4x+1}-\sqrt{3x-4}=1\)
\(\left(3\right)\sqrt{x^2-10x+25}=5-x\)
\(\left(4\right)\sqrt{x^2-8x+16}=x+2\)
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1
Cho biểu thức \(P=\frac{\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right)}{\left(\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\right)}\)
a)ĐKXĐ (câu này làm được)
b)rút gọn
c)tìm x để P nguyên
a: ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)
b: \(P=\left(\dfrac{x}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{x\left(x+5\right)}\right):\left(\dfrac{10x-25}{x\left(x+5\right)}-\dfrac{x}{x-5}\right)\)
\(=\dfrac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}:\dfrac{\left(10x-25\right)\left(x-5\right)-x^2\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{10x-25}{10x^2-50x-25x+125-x^3-5x^2}\)
\(=\dfrac{10x-25}{-x^3+5x^2-75x+125}\)
Tìm x liên quan đến lũy thừa:
1, \(\left(3x-\dfrac{1}{5}\right)^2=\left(\dfrac{-3}{25}\right)^2\)
2, \(\left(2x-\dfrac{1}{3}\right)^2=\left(\dfrac{-2}{9}\right)^2\)
3, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
4, \(\left(5-x\right)^2=25\)
1: \(\left(3x-\dfrac{1}{5}\right)^2=\left(-\dfrac{3}{25}\right)^2\)
=>3x-1/5=3/25 hoặc 3x-1/5=-3/25
=>3x=8/25 hoặc 3x=2/25
=>x=8/75 hoặc x=2/75
2: \(\left(2x-\dfrac{1}{3}\right)^2=\left(-\dfrac{2}{9}\right)^2\)
=>2x-1/3=2/9 hoặc 2x-1/3=-2/9
=>2x=5/9 hoặc 2x=1/9
=>x=5/18 hoặc x=1/18
tìm x biết
\(\frac{\left(24-x\right)^2+\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}{\left(24-x\right)^2-\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}=\frac{19}{49}\)
Đặt \(a=24-x,b=x-25\)
Khi đó pt ban đầu trở thành :
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow30a^2+68ab+30b^2=0\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=-5b\\5a=-3b\end{cases}}\)
Đến đây bạn thay vào là dễ rồi nhé ! Chúc bạn học tốt !
BT9: Tìm x biết
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\)
\(10,\left(x+3\right)^2-x^2=45\)
\(11,\left(5x-4\right)^2-49x^2=0\)
\(12,16\left(x-1\right)^2-25=0\)
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
B2 : Giải ptr :
a) \(\left(2x+5\right)^2=\left(x+2\right)^2\)
b) \(3-4x.\left(25-2x\right)=8x^2+x-300\)
c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)
a, (2x+5)mũ 2=(x+2) mũ 2
=.> (2x+5) mũ 2-(x+2) mũ 2=0
=> (2x+5+x+2)x(2x+5-x-2)=0
=>(3x+7)x(x+3)=0
=>3x+7=0 hoặc x+3=0
3x+7=0=>x=-7/3
x+3=0 =>x=-3
vậy x=-7/3 hoặc x=-3
hok tot
a) x+\(\sqrt{\left(x-2\right)^2}\)
b) \(\sqrt{\left(x-3\right)^2}\) -x
c) x-\(\sqrt{\left(x-1\right)^2}\)
d) \(\sqrt{m^2-6m+9}\) -2m
e) m-\(\sqrt{m^2-2m+1}\)
f) 2x-\(\sqrt{4x^2+4x+1}\)
g)\(\sqrt{x^2-10x+25}\) -x
h) \(\dfrac{\sqrt{x^2+10x+25}}{x^2-25}\)
i) \(\dfrac{\sqrt{1-2m+m^2}}{m^2-1}\)
a: TH1: x>=2
A=x+x-2=2x-2
TH2: x<2
A=x+2-x=2
b: TH1: x>=3
A=x-3-x=-3
TH2: x<3
A=3-x-x=-2x+3
c: TH1: x>=1
C=x-x+1=1
TH2: x<1
C=x+x-1=2x-1
d: TH1: m>=3
C=m-3-2m=-3-m
TH2: m<3
C=-m+3-2m=-3m+3
e: TH1: m>=1
E=m-m+1=1
TH2: m<1
E=m+m-1=2m-1