Mọi người giải giúp minh câu 6C với ạ
Mọi người giải giúp mình bài này với ạ, cảm ơn mn nhiều, chỉ cần câu c ý chứng minh góc 90 độ thôi ạ
a: Xét tứ giác ABQN có
\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)
=>ABQN là hình chữ nhật
b: Xét ΔCAD có
DN,CH là các đường cao
DN cắt CH tại M
Do đó: M là trực tâm của ΔCAD
=>AM\(\perp\)CD
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
=>\(HA=\sqrt{HB\cdot HC}\)
mọi người ơi giúp mình câu này với ạ, lời giải chi tiết càng tốt ạ, mình khá rối với câu này -.- cảm ơn mọi người nhiều
\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)
\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)
\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)
Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)
\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)
\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)
\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)
\(\Leftrightarrow x_2-x_1=2\)
Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)
\(\Rightarrow c=2\)
Có 1 giá trị nguyên
Mọi người giúp mik giải nhanh bài câu tường thuật với ạ chỉ cần giải câu 3 và 4 thôi ạ.
3. She said I should ask a lawyer.
4. Mrs Linh asked me to give Tuan this book.
mọi người giải giúp em câu 1 và câu 2 với ạ
Mọi người giải giúp mình câu 238 với câu 239 vs ạ
Mọi người giúp em giải câu này với ạ!
nO2 = 5,6 : 22,4=0,25
pthh: 2KClO3 -t--> 2KCl + 3O2 (1)
0,16 <------------------------0,25(mol)
=> mKClO3 = 0,16.114,5=18,32(g)
nMg = 24:24=0,1 (mol)
pthh : 2Mg + O2 -t->2MgO
0,1------------>0,1(mol)
=> mMgO = 0,1.40= 4 (g))
Mọi người giải giúp mình câu b với ạ.
Lời giải:
Vì $CF, BE$ là đường cao của tam giác $ABC$ nên:
$\widehat{AFH}=\widehat{AEH}=90^0$
Tứ giác $AEHF$ có tổng hai góc đối nhau $\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
b)
Vì $AFHE$ nội tiếp nên $\widehat{F_2}=\widehat{H_2}=\widehat{H_1}$
$\widehat{F_1}=\widehat{A_1}=90^0-\widehat{C}=\widehat{B_1}$
Áp dụng công thức $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:
$\frac{HM}{AM}=\frac{S_{FMH}}{S_{AFM}}=\frac{FH.\sin F_1}{FA.\sin F_2}=\frac{FH}{FA}.\frac{\sin B_1}{\sin H_1}$
$=\tan A_2.\sin B_1.\frac{1}{\sin H_1}$
$=\frac{BK}{AK}.\frac{HK}{BH}.\frac{BH}{BK}$
$=\frac{HK}{AK}$
$\Rightarrow HM.AK=HK.AM$
Mọi người giải giúp em câu này với ạ
mọi người giúp em với ạ, e cần giải thích của câu này ạ
Lời giải:
$\frac{x-2y}{3z}$ có thể nhận giá trị lớn nhất nếu $x$ lớn nhất và $y,z$ nhỏ nhất có thể.
$x$ lớn nhất có thể nhận là $14$ (theo điều kiện)
$y,z$ nhỏ nhất có thể nhận là $1,2$ (do $y,z$ phân biệt)
Nếu $x=14, y=1,z=2$ thì $\frac{x-2y}{3z}=2$
Nếu $x=14; y=2, z=1$ thì $\frac{x-2y}{3z}=\frac{10}{3}>2$
Đáp án D.