Cho A=12n/3n+3.tính giá trị của n để
a:A là 1 phân số
b:A là 1 số nguyên
Cho A = n + 3 n + 2 với n ∈ Z.
a) Tìm điểu kiện của số nguyên n để A là phân số.
b) Tính giá trị của phân số A khi n = 1; n = -1.
c) Tìm số nguyên n để phân số A có giá trị là số nguyên:
a) n ∈ Z và n ≠ –2
b) HS tự làm
c) n ∈ {-3;-1}
Câu 1:Cho A=\(\dfrac{12n+1}{2n+3}\\\).Tìm giá trị của n để:
a)A là 1 phân số.
b)A là 1 số nguyên.
a) Để A là một phân số thì mẫu của \(A\ne0\) hay \(2n+3\ne0\)
\(\Leftrightarrow n\ne\dfrac{-3}{2}\)
b) Ta có : \(A=\dfrac{12n+1}{2n+3}\)
\(\Rightarrow A=\dfrac{12n+18-17}{2n+3}=\dfrac{12n+18}{2n+3}-\dfrac{17}{2n+3}\)
\(\Rightarrow A=\dfrac{6\left(2n+3\right)}{2n+3}-\dfrac{17}{2n+3}=6-\dfrac{17}{2n+3}\)
Để \(A\in Z\Leftrightarrow\dfrac{17}{2n+3}\in Z\)
\(\Leftrightarrow2n+3\in U\left(17\right)\)
mà \(U\left(17\right)=\left(1;-1;17;-17\right)\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
Vậy \(A\in Z\Leftrightarrow n\in\left(-1;-2;7;-10\right)\)
cho A= 12n/3n+3. tìm giá trị của n để:a.A là một phân số. b.A là một số nguyên c. với giá trị nào của stn n thì a có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao hiêu
a: Để A là phân số thì 3n+3<>0
hay n<>-1
b: Để A là số nguyên thì \(4n⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Cho phân số : A= 12n+1/2n+3 . Tìm giá trị của n để :
a, A là 1 phân số
b, A là 1 số nguyên
1.Cho A=2n+3/n,n thuộc Z
a) Với giá trị nào của n thì A là phân số
b)Tìm giá trị n để A là số nguyên
2.Tìm số nguyên sao cho phân số 3n-1/3n-4 nhận giá trị nguyên
3)So sánh các phân số 6 a+1/a+2 và a+2/a+3
Cho A = 12n + 1/2n + 3 . Tìm giá trị của n để:
a. A là một phân số
b. A là một số nguyên
a) Để A là ps thì: \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)
b) \(A=\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2x+3}\)
Vậy để \(A\in Z\) thì \(2n+3\inƯ\left(17\right)\)
Mà Ư(17)={1;-1;17;-17}
Ta có bảng sau:
2n+3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -9 |
Vậy x={ -9;-2;-1;7}
Trần Việt Linh sai rồi.
Cho A = \(\dfrac{12n}{3n+3}\)
a) A là 1 phân số
b) A là số nguyên
c) Với giá trị nào của số tự nhiên n thì A có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu
a: Để A là phân số thì 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12n}{3\left(n+1\right)}=\dfrac{4n}{n+1}\)
Để A là số nguyên thì 4n+4-4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
cho A= 12n+1/2n+3. Tìm giá trị của n để:
a. A là một phân số
b. A là một số nguyên
a) Để A là phân số
Thì 12n+1 \(\in\)Z, 2n+3 \(\in\)Z
và 2n+3 \(\ne\)0
Ta có: 2n+3 \(\ne\)0
2n \(\ne\)0-3
2n \(\ne\)-3
n\(\ne\)-3:2
n\(\ne\)\(\frac{-3}{2}\)
Vậy để A là phân số thì n \(\in\)Z, n\(\ne\)\(\frac{-3}{2}\)
b) Để A là số nguyên
Thì (12n+1) \(⋮\)(2n+3)
Ta có: 12n+1= 2.6.n + (18-17) (vì 18:6= 3, mình giải thích thêm thôi)
= 2.6.n+18-17
= 6.(2n+3) -17
\(\Rightarrow\)[6(2n+3)-17] \(⋮\)(2n+3)
Vì [6(2n+3)] \(⋮\)(2n+3)
Nên để [6(2n+3)-17] \(⋮\)(2n+3)
thì 17\(⋮\)(2n+3)
\(\Rightarrow\)(2n+3)\(\in\)Ư(17)
Ta có: Ư(17)={1;-1;17;-17}
\(\Rightarrow\)(2n+3) \(\in\){1;-1;17;-17}
Với 2n+3=1
2n=1-3
2n=-2
n=-2:2
n=-1
...( bạn tự viết đến hết và tự kết luận nhé
sao bạn không lâp bảng cho tiện . đỡ phải viết dài dòng
cho A = 12n+1/2n+3 . Tìm giá trị của n để:
a) A là một phân số
b) A là một số nguyên