Tính N=\(\dfrac{1.198+2.197+...+198.1}{1.2+2.3+...+198.199}\)
tính nhanh :
a) 5/13 . (6/29 - 26/39) - 6/29 . (5/13 - 29/6)
b)1.198 + 2.197 + 3.196 +...+ 198.1 / 1.2 + 2.3 + 3.4 +...+ 198.199
a: \(\dfrac{5}{13}\left(\dfrac{6}{29}-\dfrac{26}{39}\right)-\dfrac{6}{29}\cdot\left(\dfrac{5}{13}-\dfrac{29}{6}\right)\)
\(=\dfrac{5}{13}\cdot\dfrac{6}{29}-\dfrac{5}{13}\cdot\dfrac{26}{39}-\dfrac{6}{13}\cdot\dfrac{5}{13}+\dfrac{6}{29}\cdot\dfrac{29}{6}\)
\(=\dfrac{-5}{39}\cdot2+1=1-\dfrac{10}{39}=\dfrac{29}{39}\)
b: \(\dfrac{1\cdot198+2\cdot197+3\cdot196+...+198\cdot1}{1\cdot2+2\cdot3+...+198\cdot199}\)
\(=\dfrac{1\left(199-1\right)+2\left(199-2\right)+...+198\cdot\left(199-198\right)}{1\left(1+1\right)+2\left(1+2\right)+...+198\left(1+198\right)}\)
\(=\dfrac{199\left(1+2+...+198\right)-\left(1^2+2^2+...+198^2\right)}{\left(1+2+...+198\right)+\left(1^2+2^2+...+198^2\right)}\)
\(=\dfrac{199\cdot\dfrac{198\cdot199}{2}-\dfrac{198\cdot\left(198+1\right)\cdot\left(2\cdot198+1\right)}{6}}{198\cdot\dfrac{199}{2}+\dfrac{198\left(198+1\right)\left(2\cdot198+1\right)}{6}}\)
\(=\dfrac{3\cdot198\cdot199^2-198\cdot199\cdot397}{6}:\dfrac{3\cdot198\cdot199+198\cdot199\cdot397}{6}\)
\(=\dfrac{198\cdot199\left(3\cdot199-397\right)}{198\cdot199\left(3+397\right)}\)
\(=\dfrac{200}{400}=\dfrac{1}{2}\)
Tính M=\(\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+198\right)}{1.198+2.197+3.196+...+198.1}\)
Tính M=\(\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+198\right)}{1.198+2.197+3.196+...+198.1}\)
Bài 5) Tính giá trị của biểu thức
a) A=1.2+2.3+3.4+...+9.10
b) B=3.4+4.5+5.6+...+198.199+199.200
c) C=1.2.3+2.3.4+3.4.5+...+8.9.10
d) D=31.32.33+32.33.34+...+58.59.60
e) E=1.3+3.5+5.7+...+95.97+97.99
f) F=51.53+53.55+...+153.155+155.157
g) G=1.3.5+3.5.7+...+15.17.19+17.19.21
h) H=2.4+4.6+6.8+...+96.98+98.100
Bài 5:
a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)
\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)
\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)
hay A=330
Vậy: A=330
10.4. Tính tổng
a) \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
b) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)
c) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +...........\(\dfrac{1}{99.100}\)
d) \(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +.........\(\dfrac{1}{99.100}\)
giúp em
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
tính tổng
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{n.\left(n+1\right)}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n+1\right)}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
= 1 - \(\dfrac{1}{n+1}\) = \(\dfrac{n}{n+1}\)
Tính:
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+,.......+\(\dfrac{1}{2021.2022}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
Tính
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Tính tổng
$\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + $\dfrac{1}{3.4}$ + .... + $\dfrac{1}{99.100}$
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
Học từ lớp 4 rồi :V