Cho tam giác .ABC cân tại A. Kẻ BH | AC; CK perp AB ( H in AC ; K in AB ). a) Chứng minh tam giác AKH là tam giác cản b) Gọi I là giao của BH và CK; A cắt BC tại M. Chứng minh rằng IM là phân giác của hat BIC c) Chứng minh. HK //BC
Cho tam giác ABC cân tại A,cho tam giác cân ABC cân tại A, M nằm trên BC, từ M kẻ MD vuông với AB, D thuộc AB.Cũng từ M kẻ ME vuông với AC, E thuộc AC.Kẻ BH vuông với AC, H nằm trên AC.CMR: BH=MD+ME
Cho tam giác ABC cân tại A kẻ BH vuông góc với Ac kẻ CK vuông góc với AB a) chứng minh tam giác AHK là tam giác cân
Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{BCA}=\widehat{CBA}\) hay \(\widehat{BCH}=\widehat{CBA}\)
Xét hai tam giác vuông BHC và CKB có:
\(\left\{{}\begin{matrix}BC\text{ chung}\\\widehat{BCH}=\widehat{CBK}\end{matrix}\right.\) \(\Rightarrow\Delta_VBHC=\Delta_VCKB\left(ch-gn\right)\)
\(\Rightarrow CH=BK\) (1)
Mà \(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\)
\(\Rightarrow AK+BK=AH+CH\) (2)
(1);(2) \(\Rightarrow AK=AH\)
\(\Rightarrow\Delta AHK\) cân tại A
Do cân tại A hay
Xét hai tam giác vuông BHC và CKB có:
(1)
Mà cân tại A
(2)
(1);(2)
cân tại A
Cho tam giác abc cân tại b . Kẻ bh vuông góc ac (h thuộc ac) Cm a) tam giác abc = tam giác cbh b) cho bh = 4 cm, ac = 6 cm . Tính bc =? c) kẻ he vuông góc ab, hf vuông góc bc . Cm be= bf
cho tam giác abc cân tại a, kẻ bh vuông góc với ac, kẻ ck vuông góc voiwsab
. cm tam giác abh = tam giác ack, bh = ck
xét tam giác ABH và tam giác ACK có
AB=AC
góc AHB=góc AKC=90độ
góc A là góc chung
suy ra tam giác ABH = TAM GIÁC ACK (cạnh huyền - góc nhọn)
B;
do tam giác ABH= tam giác ACK
suy ra BH=CK (hai cạnh tương ứng)
giúp mình phần hình được ko
tớ chịu thôi! tớ chỉ giải thế thôi
Cho tam giác ABC cân tại A ( AB = AC ) , kẻ BH vuông góc với AC tại H . Biết AH = 7cm ,HC = 2 cm . Tính độ dài đáy BC của tam giác cân ABC
Ta có: AC = AH + HC = 7 + 2 = 9 (cm)
Vì AB = AC => AB = 9 cm
Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 = 92 - 72 = 32
Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:
BC2 = BH2 + HC2 = 32 + 22 = 36
=> BC = 6 (cm)
1) Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
2) Cho tam giác cân ABC, M bất kì thuộc BC. Kẻ ME, MF vuông góc với AC, AB. Kẻ BH vuông góc AC. Chứng minh ME + MF = BH
Cho tam giác abc cân tại a, kẻ bh vuông góc với ac, kẻ ck vuông góc với ab. cm
a, Tam giác abh = tam giác ack
b, bh = ck
cho tam giác cân ABc cân tại A, kẻ BH vuông góc với AC tại H, AH=6cm, CH=4cm. Tính BC
bài 1 ta có :
AC=AH+HC=6+4=10cm
Vì ΔABC cân tại A nên AB=AC=10cm
Vì ΔABH vuông tại H
⇒AB\(^2\)=AH\(^2\)+BH\(^2\)
⇒10\(^2\)=6\(^2\)+BH\(^2\)
⇒BH=8cm
Vì ΔBHC vuông tại H
⇒BC\(^2\)=BH\(^2\)+CH\(^2\)
⇒BC\(^2\)=8\(^2\)+4\(^2\)
⇒BC=4\(\sqrt{5}\)cm
Cho tam giác ABC cân tại A ( Â<90°). Kẻ BH vuông góc AC ( H thuộc AC) , CK thuộc AB ( K thuộc AB).BH và CK cắt nhau tại E. a) Chứng minh tam giác BHC = tam giác CKB. b) Chứng minh tam giác ABC cân tại E
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Cho tam giác ABC cân tại A, kẻ BH ⊥ AC. Gọi D là một điểm thuộc cạnh đáy BC. Kẻ DE ⊥ AC, DF ⊥ AB.
Chứng minh rằng DE + DF = BH
Kẻ DK ⊥ BH
Ta có: BH ⊥AC(gt)
Suy ra: DK // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song)
⇒ ∠KDB = ∠C (hai góc đồng vị)
VìΔABC cân tại A nên ∠B = ∠C (tính chất tam giác cân)
Suy ra: ∠KDB = ∠B
Xét hai tam giác vuông BFD và DKB, ta có:
∠BFD = ∠DKB = 90o
BD cạnh huyền chung
∠FBD = ∠KDB (chứng minh trên)
Suy ra:ΔBFD=ΔDKB (cạnh huyền góc nhọn)
⇒ DF = BK (hai cạnh tương ứng)(1)
Nối DH. Xét ΔDEH và ΔHKD, ta có:
∠DEH = ∠DKH = 90o
DH cạnh huyền chung
∠EHD = ∠KDH (hai góc so le trong)
Suy ra:ΔDEH = ΔDKH( cạnh huyền , góc nhọn)
Suy ra: DE = HK ( hai cạnh tương ứng) (2)
Mặt khác: BH = BK + KH (3)
Từ (1), (2) và (3) suy ra: DF + DE = BH