Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2019 lúc 3:17

Đáp án C

Mặt cầu:  x 2   +   y 2   +   z 2  + 2x - 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và

Mặt cầu:  x 2   +   y 2   +   z 2  + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1

Do đó, hai mặt cầu này cắt nhau.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
29 tháng 9 2023 lúc 23:40

a) Tọa độ giao điểm của hai đường thẳng \({d_1},{d_2}\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}3x + 2y - 5 = 0\\x - 4y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{9}{7}\\y = \frac{4}{7}\end{array} \right.\)

Hệ phương trình có nghiệm duy nhất nên 2 đường thẳng cắt nhau.

b) Tọa độ giao điểm của hai đường thẳng \({d_3},{d_4}\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\ - 2x + 4y + 10 = 0\end{array} \right.\) .

Hệ phương trình vô nghiệm.nên 2 đường thẳng song song với nhau

c) Tọa độ giao điểm của hai đường thẳng \({d_5},{d_6}\) tương ứng với t thỏa mãn phương trình:

\(4\left( { - \frac{1}{2} + t} \right) + 2\left( {\frac{5}{2} - 2t} \right) - 3 = 0 \Leftrightarrow 0t = 0\) .

Phương trình này có nghiệm với mọi t. Do đó \({d_5} \equiv {d_6}\).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 2 2018 lúc 18:10

Xét Δ và d1, hệ phương trình: Giải bài tập Toán 10 | Giải Toán lớp 10 có vô số nghiệm (do các hệ số của chúng tỉ lệ nên Δ ≡ d1.

Xét Δ và d2, hệ phương trình: Giải bài tập Toán 10 | Giải Toán lớp 10 có nghiệm duy nhất (-1/5; 2/5) nên

Δ cắt d2 tại điểm M(-1/5; 2/5).

Xét Δ và d3, hệ phương trình: Giải bài tập Toán 10 | Giải Toán lớp 10vô nghiệm

Vậy Δ // d3

Nguyễn Quỳnh Trang
Xem chi tiết
lô
Xem chi tiết
Dương ♡
25 tháng 3 2020 lúc 20:10

a) Hai mặt phẳng cắt nhau, vì 1: 2: (-1) ≠ 2: 3: (-7)

b) Hai mặt phẳng cắt nhau, vì: 1: (-2): 1 ≠ 2: (-1): 4

c) Hai mặt phẳng song song, vì: 1/2=1/2=1/2 ≠ -1/3

d) Hai mạt phẳng cắt nhau, vì: 3: (-2): 3 ≠ 9: (-6): (-9)

e) Hai mặt phẳng trung nhau, vì: 1/10=-1/(-10)=2/20=-4/(-40).

           #rin

Khách vãng lai đã xóa
Tâm Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2021 lúc 20:33

\(\overrightarrow{n_{\left(\alpha\right)}}=\left(1;2;3\right)\)

\(\overrightarrow{n_{\left(P\right)}}=\left(2;4;6\right)\)

\(\overrightarrow{n_{\left(R\right)}}=\left(2;-4;6\right)\)

\(\overrightarrow{n_{\left(Q\right)}}=\left(1;-1;2\right)\)

\(\overrightarrow{n_{\left(S\right)}}=\left(1;-1;2\right)\)

Tích vô hướng của \(\overrightarrow{n_{\left(\alpha\right)}}\) với cả 4 vecto kia đều khác 0 nên ko mặt phẳng nào vuông góc với \(\left(\alpha\right)\)

Bạn coi lại đề bài

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 5 2018 lúc 2:46

( α 3 ) ≡ ( α ' 3 )

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:02

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;1} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + ( - 1).1 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - 3; - 1} \right)\)

 b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 2} \right),\overrightarrow {{n_2}}  = \left( {5; - 2} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;3)\) thuộc \({d_1}\), thay tọa độ của vào phương trình \({d_2}\), ta được \(5.1 - 2.3 + 9 = 8 \ne 0\), suy ra không thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;1} \right),\overrightarrow {{n_2}}  = \left( {3;1} \right)\)

Suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(2;5)\) thuộc \({d_1}\), thay tọa độ của vào phương trình \({d_2}\), ta được \(3.2 + 5 - 11 = 0\), suy ra thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) trùng nhau

Luân Trần
Xem chi tiết
Etermintrude💫
15 tháng 3 2021 lúc 18:58

undefinedundefined