A=1/4+1/9+1/16+...+1/2024.2024
A=1/4+1/9+1/16+...+1/2024
So sánh .
3/7 và 5/12. 9/8 và 2023/2024
1+ 15 /16 và 1+ 16/15
Ta có:
Mẫu số chung 2 phân số: 84
\(\dfrac{3}{7}=\dfrac{3*12}{7*12}=\dfrac{36}{84}\)
\(\dfrac{5}{12}=\dfrac{5*7}{12*7}=\dfrac{35}{84}\)
Vì \(36>35\) nên\(\dfrac{36}{84}>\dfrac{35}{84}\)
Vậy \(\dfrac{3}{7}>\dfrac{5}{12}\)
Ta có:
\(\dfrac{9}{8}>1>\dfrac{2023}{2024}\) nên \(\dfrac{9}{8}>\dfrac{2023}{2024}\)
Ta có:
\(\dfrac{1+15}{16}=1\)
\(\dfrac{1+16}{15}=\dfrac{17}{15}>1\)
\(\Rightarrow\dfrac{1+15}{16}>\dfrac{1+16}{15}\)
D = 1+ 1/2+1/4+1/8+1/16+...+1/2024
\(D=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\) (sửa đề)
\(\dfrac{1}{2}\cdot D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{4096}\)
\(D-\dfrac{1}{2}D=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{4096}\right)\)
\(\dfrac{1}{2}D=1-\dfrac{1}{4096}\)
\(\dfrac{1}{2}D=\dfrac{4095}{4096}\)
\(\Rightarrow D=\dfrac{4095}{4096}:\dfrac{1}{2}=\dfrac{4095}{2048}\)
Vậy \(D=\dfrac{4095}{2048}\)
1+2+3+4 +...+2023
20+21+22+...+2024
2+4+6+...+2024
1+2+4+8+16+....+ 8192
Đặt A = 1 + 2 + 3 + 4 + ... + 2023
Tổng có 2023 - 1 + 1 số hạng
A = (2023 + 1) × 2023 : 2
= 2047276
-----------------------
Đặt B = 20 + 21 + 22 + ... + 2024
Tổng có: 2024 - 20 + 1 = 2005 số hạng
B = (2024 + 20) × 2005 : 2
= 2049110
------------------------
Đặt C = 2 + 4 + 6 + ... + 2024
Tổng có (2024 - 2) : 2 + 1 = 1012 số hạng
C = (2024 + 2) × 1012 : 2
= 1025156
------------------------
Đặt D = 1 + 2 + 4 + 8 + 16 + ... + 8192
2 × D = 2 + 4 + 8 + 16 + 32 + ... + 16384
2 × D - D = (2 + 4 + 8 + 16 + 32 + ... + 16384) - (1 + 2 + 4 + 8 + 16 + ... + 8192)
= 16384 - 1
= 16383
Vậy D = 16383
\(a,A=1+2+3+4+5..+2023\)
Số số hạng:
\(\left(2023-1\right):1+1=2023\)
Tổng :
\(\dfrac{\left(2023+1\right).2023}{2}=2047276\)
\(b,20+21+22+..+2024\)
Số số hạng:
\(\left(2024-20\right):1+1=2005\)
Tổng:
\(\dfrac{\left(2024+20\right).2005}{2}=2049110\)
\(c,2+4+6+..+2024\)
Số số hạng:
\(\left(2024-2\right):2+1=1012\)
Tổng:
\(\dfrac{\left(2024+2\right).1012}{2}=1025156\)
1+2+3+4 +...+2023
Số phần tử là :
( 2023 -1 ) : 1 + 1 = 2023 ( phần tử )
Tổng các số là :
( 2023 + 1 ) x 2023 : 2 = 2047276
20+21+22+...+2024
Số phần tử là :
( 2024 - 20 ) : 1 + 1 = 2005 ( phần tử )
Tổng các số là :
( 2024 + 20 ) x 2005 : 2 = 2049110
2+4+6+...+2024
Số phần tử là :
( 2024 - 2 ) : 2 + 1 = 1012 ( phần tử )
Tổng các số là :
( 2024 + 2 ) x 1012 : 2 = 1025156
1+2+4+8+16+....+ 8192
A = 2^0 + 2^1 + 2^2 + 2^3 +....+2^13
2A = 2^1 + 2^2 + 2^3 + 2^4 +..... + 2^14
2A - A = 2^14 - 2^0
=> A = 2^14 -1
1/2-1/4-1/8-1/16-...-1/2024
=-1-(1/2+1/2^2+1/2^3+.....+1/2^10)
đặt A=(1/2+1/2^2+1/2^3+.....+1/2^10)
2A=2(1/2+1/2^2+1/2^3+.....+1/2^10)=1+1/2+...+1/2^9
A=(1+1/2+...+1/2^9)-(1/2+...+1/2^10)
A=1-1/2^10
=-1-1-1/2^10=......tự làm nha
Đề chắc sai e ạ, a sửa luôn :
\(A=\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(2A=1-\frac{1}{2}-...-\frac{1}{2^9}\)
\(2A-A=\left(1-\frac{1}{2}-...-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2}-...-\frac{1}{2^9}-\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(A=1-\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2^{10}}\)
\(A=\frac{1}{2^{10}}\)
1/2-1/4+1/8-1/16+...-1/2024+1/2028
A=3(23+1)(24+1)(28+1)(216+1)
A=(22−1).9(24+1)(28+1)(216+1)
A=\(\frac{9}{3}\).(22−1)(22+1)(24+1)(28+1)(216+1)
A=\(\frac{9}{3}\).(24−1)(24+1)(28+1)(216+1)
A=\(\frac{9}{3}\).(28−1)(28+1)(216+1)
A=\(\frac{9}{5}\).(216−1)(216+1)
A=\(\frac{9}{3}\).(232−1)
các bạn kiểm tra xem mình có đúng ko nhá.............
A = 9/8 - 8/9 + 3/25 + 1/4 - 5/16 + 19/25 - 1/9 + 2/25 - 1/81
B = -1/3- 8/35 - 2/9 - 1/35 + 4//5 + -4/9 + 3/7
\(A=\dfrac{9}{8}-\dfrac{8}{9}+\dfrac{3}{24}+\dfrac{1}{4}-\dfrac{5}{16}+\dfrac{19}{25}-\dfrac{1}{9}+\dfrac{2}{25}-\dfrac{1}{81}\)
\(=\dfrac{9}{8}+\dfrac{1}{4}-\dfrac{5}{16}+\dfrac{1}{8}-\dfrac{8}{9}-\dfrac{1}{9}-\dfrac{1}{81}+\dfrac{19}{25}+\dfrac{2}{25}\)
\(=\dfrac{10}{8}+\dfrac{1}{4}-\dfrac{5}{16}-1-\dfrac{1}{81}+\dfrac{21}{25}\)
\(=\dfrac{20+4-5}{16}-\dfrac{82}{81}+\dfrac{21}{25}\)
\(=\dfrac{19}{16}-\dfrac{82}{81}+\dfrac{21}{25}\)
\(=\dfrac{32891}{16\cdot81\cdot25}\)
b: \(B=-\dfrac{1}{3}-\dfrac{8}{35}-\dfrac{2}{9}-\dfrac{1}{35}+\dfrac{4}{5}-\dfrac{4}{9}+\dfrac{3}{7}\)
\(=\dfrac{-1}{3}-\dfrac{2}{9}-\dfrac{4}{9}-\dfrac{8}{35}-\dfrac{1}{35}+\dfrac{4}{5}+\dfrac{3}{7}\)
\(=\dfrac{-3-2-4}{9}+\dfrac{-9}{35}+\dfrac{28+15}{35}\)
\(=-1+\dfrac{-9+43}{35}=-1+\dfrac{34}{35}=-\dfrac{1}{35}\)
a)√49 - √4 + √25 b)(√100 - √1) : √(-3)² c)√16 + 9 - √25 - 9 d)√(-7)² - √1⁴⁰ . √16