Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tú Hà
Xem chi tiết
Dang Tung
22 tháng 6 2023 lúc 9:59

Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)

Do đó đề bài xảy ra khi và chỉ khi :

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)

Nguyễn Tú Hà
22 tháng 6 2023 lúc 10:35

Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?

Dương Đỗ đai
Xem chi tiết
Dang Tung
2 tháng 1 lúc 19:14

\(\left(x-2022\right)^{2024}+\left|y-2023\right|\le0\left(1\right)\)

Nhận thấy : \(\left(x-2022\right)^{2024}\ge0\forall x\inℝ,\left|y-2023\right|\ge0\forall y\inℝ\)

\(=>\left(x-2022\right)^{2024}+\left|y-2023\right|\ge0\forall x,y\inℝ\)

Do đó (1) xảy ra khi :

\(\left(x-2022\right)^{2024}=0,\left|y-2023\right|=0\)

\(=>\left(x;y\right)=\left(2022;2023\right)\)

Ngữ Gia Bảo
Xem chi tiết
toulin
Xem chi tiết
Nguyễn Đăng Nhân
30 tháng 9 2023 lúc 19:49

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

Akai Haruma
30 tháng 9 2023 lúc 20:02

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.

Hướng Hồng Ngân
Xem chi tiết
Phan Thị Dung
11 tháng 4 2023 lúc 23:34

1.     Giải:

Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)

 

 \(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)

 \(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)

Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.

⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)

Ta có bảng:

   2x+1        1       3       7      21
       x        0       1       3      10
        TM      TM      TM      TM

Vậy xϵ\(\left\{0;1;3;10\right\}.\)

2. Giải:

Do (2x-18).(3x+12)=0.

⇒ 2x-18=0             hoặc             3x+12=0.

⇒ 2x     =18                               3x       =-12.

⇒   x     =9                                   x       =-4.

Vậy xϵ\(\left\{-4;9\right\}.\)

3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.

S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.

S= 0 + 0 + ... + 0 + 2025.

⇒S= 2025.

 

Nguyễn Ngọc Trang
Xem chi tiết
Remind
16 tháng 7 2023 lúc 16:21

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

Nàng Bạch Dương
Xem chi tiết
Xyz OLM
29 tháng 4 2023 lúc 11:44

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

Nguyễn Tú Hà
Xem chi tiết

a,Nghiệm của (2\(x\) - 5)2022 là giá trị của \(x\) thỏa mãn

  (2\(x\) - 5)2022 = 0

   2\(x\) -  5 = 0

  2\(x\)        = 5

  2\(x\)       = 5:2

   \(x\)        = 2,5

b, Nghiệm của (3\(x\) + 4)2024 là giá trị của \(x\) thỏa mãn:

(3\(x\) + 4)2024 = 0

    3\(x\) + 4 = 0

    3\(x\)       = -4

   \(x\)       = - 4 : 3

   \(x\) = -\(\dfrac{4}{3}\)

Phùng Văn Trinh
Xem chi tiết
Bùi Trung Kiên
23 tháng 3 2023 lúc 14:57

P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997

P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997

P= 0 +0 +...+ 0 +997

P=997