Cho A =\(7^1+7^3+7^5+7^7+...+7^{1997}+7^{1999}\)
Chứng tỏ A chia hết cho 35.
Giúp mình với nhé. Ngày mai mình nộp rồi Thank you.
Chứng minh rằng: ( 7101- 1) :6 chia hết cho 7 và 8.
Giúp mình lần nữa nhé! Mai mình phải nộp bài rồi !
Chứng minh rằng:
742+741+740+739 chia hết cho 20
Mình đang rất cần đáp án.Bạn nào có thể giải giúp mình mình cảm ơn trước ạ.vì ngày mai mình phải nộp bài rồi!Mình sẽ cho 1 tick!Trân trọng!
\(=7^{39}\left(1+7+7^2+7^3\right)=7^{39}\left[\left(1+7^2\right)+7\left(1+7^2\right)\right].\)
\(=7^{39}\left(50+7.50\right)=7^{39}.50.\left(1+7\right)=7^{39}.400\)chia hết cho 20
Cho A =7^1+7^2+7^3+....+7^99+7^100
Chứng tỏ rằng A chia hết cho 8
các bạn giúp mình nhé!
A = 7+72 + 73 +....+ 7100
= (7+72) + (73 + 74)+.....+(799+7100)
= 7(1+7) + 73(1+7)+.......+799(1+7)
= 8(7+72+73+.....+ 799) chia hết cho 8
A = 7 + 72 + 73 + ... + 799 + 7100
A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )
A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799
A = 8 . 7 + 8 . 73 + ... + 8 . 799
A = 8 . ( 7 + 73 + ... + 799 )
=> A chia hết cho 8 (đpcm)
giai
(7+7^2)+(7^3+7^4) + .................+(7^99+7^100)
7*(1+7) +7^3*(1+7)+.........+7^99*(1+7)
=8*(7+7^2+.........+7^99)
vi 8 nhan voi may cung chia het cho 8
=> 8*(7+7^2+............+7^99) chia het cho 8
Cho D = 7+73+75+...+71999
a, Tính D
b, CMR D chia hết cho 35
Ai giúp mình với
a) D = 7+73+75+...+71999
=> 72D= 73+75+...+71999+72001
=> 72D-D=(73+75+...+71999+72001)-( 7+73+75+...+71999)
=> 72D-D hay D(72-1)=48D=72001-7
=> D=(72001-7)/48
a, D = 7+73+75+.....+71999
72D = 73+75+77+.....+72001
48D = 72D - D = 72001-7
=> D = \(\frac{7^{2001}-7}{48}\)
b, D = 7+73+75+.....+71999
D = (7+73)+(75+77)+.....+(71997+71999)
D = 1(7+73)+74(7+73)+.....+71996(7+73)
D = 1.350 + 74.350+.....+71996.350
D = 350(1+74+......+71996) chia hết cho 350
=> D chia hết cho 35 ( Vì 350 chia hết cho 35)
bài 1 cho S = 5+ 5 mũ 2 +5 mũ 3 +.... + 5 mũ 2005 +5 mũ 2006 chứng minh S chia hết cho 126
bài 2: cho S = 7+7 mũ 3 + 7 mũ 5 + 7 mũ 1997 + 7 mũ 1999
chứng minh S chia hết cho 35
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
Các bạn giúp mình bài này với nhé:
Câu 1:
Cho A = 7 + 73 + 75 +...+ 72013 + 72015.
Chứng minh rằng A chia hết cho 35.
Cảm ơn các bạn nha!!!!!!!
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35
Cho A= 7 mũ 0+ 7 mũ 1+ 7 mũ 2+ 7 mũ 3+...+ 7 mũ 2016+ 7 mũ 2017. Chứng tỏ A chia hết cho 8.
Giúp mình với!!
tìm x thuộc z biết x + 7 chia hết cho x+5
cảm bạn giải nhanh giúp mình nhé tối nay phải nộp rồi
thank you các trước
x+ 7 \(⋮\)x+5
=> x+5 \(⋮\)x+5
=> ( x+7)-( x+5) \(⋮\)x+5
=> x+7 - x-5 \(⋮\)x+5
=> 2 \(⋮\)x+5
=> x+ 5 \(\in\)Ư(2)= {1; 2; -1; -2}
=> x \(\in\){ -4; -3; -6: -7}
Vậy...
+)Ta có:x+5\(⋮\)x+5(1)
+)Theo bài ta có:x+7\(⋮\)x+5(2)
+)Từ (1) và (2)
=>(x+7)-(x+5)\(⋮\)x+5
=>x+7-x-5\(⋮\)x+5
=>2\(⋮\)x+5
=>x+5\(\in\)Ư(2)={\(\pm\)1;\(\pm\)2}
=>x\(\in\){-6;-4;-7;-3}
Vậy x\(\in\) {-6;-4;-7;-3}
Chúc bn học tốt
Chứng tỏ 3^1999-7^1997 chia hết cho 5
Ta có:
\(3^{1999}=3^{2000}:3\)
\(=\left(3^2\right)^{1000}:3\)
\(=9^{1000}:3\)
\(=.....:3=.....7\)
\(7^{1997}=7^{1996}.7\)
\(=\left(7^2\right)^{998}.7\)
\(=49^{998}.7\)
\(=.....1.7=.....7\)
Do đó: \(3^{1999}-7^{1997}=.....7-.....7=.....0\)
Vì \(.....0\) chia hết cho \(5.\)
\(\Rightarrow3^{1999}-7^{1997}\) chia hết cho \(5.\) ( đpcm )