Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cường Phạm

Những câu hỏi liên quan
Lê Văn Trưởng
Xem chi tiết
Nguyễn Quỳnh Anh
18 tháng 4 2022 lúc 21:20

=2/5 nha

Answer:

\(2+5y^2=6\)

\(5y^2=6-2\)

\(5y^2=4\)

\(5y^2=2^2\)

 

\(\Rightarrow5y=2\)

\(y=2\div5\)

\(y=\dfrac{2}{5}\)

Vậy \(y=\dfrac{2}{5}\)

Lê Văn Trưởng
Xem chi tiết
Lê Văn Trưởng
18 tháng 4 2022 lúc 21:03

ai bt thì giúp mk nhé

Nakaroth247
18 tháng 4 2022 lúc 21:05

`(x - 1)^2 + 5y^2 = 6`

`<=>` $\left[\begin{matrix} (x - 1)^2 = 0\\ (x - 1)^2 = 2\end{matrix}\right.$

`<=>` $\left[\begin{matrix} y = -1; 1\\ y = -1; 1\end{matrix}\right.$\

`<=>` $\left[\begin{matrix} x = 0 ; y = -1; 1\\ x = 2 ; y = -1; 1\end{matrix}\right.$

Lương Khánh Nhật Minh
18 tháng 4 2022 lúc 21:09

(x-1)2≥0         => 5y2≤6         => y2≤6/5        

Mà y2 là số chính phương                => y2 = 0   hoặc y2 = 1

TH1: y2= 0

=> (x-1)2 = 6 (vô lý)

TH2: y2 = 1            => y = -1 hoặc 1

=> 5y2=5

=> (x-1)2=6-5=1

=> x-1 = 1 hoặc x-1 = -1

=> x=2 hoặc x=0

Vậy các cặp số tm là (0,1); (0,-1); (2,1); (2,-1)

Khánh Nguyên Phan
Xem chi tiết
nglan
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 22:08

C=(2x-1)(x-1)(2x^2-3x-1)+2017

=(2x^2-3x+1)(2x^2-3x-1)+2017

=(2x^2-3x)^2-1+2017

=(2x^2-3x)^2+2016>=2016

Dấu = xảy ra khi 2x^2-3x=0

=>x=0 hoặc x=3/2

D=(x-1)(x-6)(x-3)(x-4)+10

=(x^2-7x+6)(x^2-7x+12)+10

=(x^2-7x)^2+18*(x^2-7x)+72+10

=(x^2-7x+9)^2+1>=1

Dấu = xảy ra khi x^2-7x+9=0

=>\(x=\dfrac{7\pm\sqrt{13}}{2}\)

Nguyễn Thị Bích Ngọc
Xem chi tiết
Lê Thị Châu Anh
Xem chi tiết
⭐Hannie⭐
4 tháng 7 2023 lúc 15:35

\(6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2+xy\right)\\ =6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2+5xy^3\\ =\left(6x^2y^2+8x^2y^2+5x^2y^2\right)+\left(-6xy^3+5xy^3\right)-8x^3\\ =19x^2y^2-xy^3-8x^3\)

Với `x=1/2;y=2` ta có :

 \(19x^2y^2-xy^3-8x^3\\ =19.\left(\dfrac{1}{2}\right)^2.2^2-\dfrac{1}{2}.2^3-8.2^3\\ =19.\dfrac{1}{4}.4-\dfrac{1}{2}.8-8.8\\ =19-4-64\\ =-49\)

Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Phạm Trọng An Nam
Xem chi tiết
vianhduc
15 tháng 4 2019 lúc 19:39

pặc pặc....pặc pặc...........pặc pặc......

._.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 3 2018 lúc 15:52