cho tứ giác ABCD .Gọi E;I;F theo thứ tự là trung điểm của AD ,BD ,BC.Chứng minh rằng :EI//AB; IF //CD
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tìm điều kiện của tứ giác ABCD để tứ giác EFGH là hình chữ nhật ?
Chứng minh EFGH là hình bình hành. Để EFGH là hình chữ nhật thì
Þ H E F ^ = 90 0 ⇒ H E ⊥ E F
Þ AC ^BD.
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, AC, CD, DB. Tìm điều kiện của tứ giác ABCD để EFGH là: Hình vuông
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF là đường trung bình của tam giác ABC
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có
HB = HD, GD = GC (gt)
Nên HG là đường trung bình của tam giác BDC
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
EFGH là hình vuông khi và chỉ khi EFGH là hình chữ nhật đồng thời là hình thoi
⇔ AD ⊥ BC và AD = BC
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, AC, CD, DB. Tìm điều kiện của tứ giác ABCD để EFGH là: Hình thoi
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF là đường trung bình của tam giác ABC
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có
HB = HD, GD = GC (gt)
Nên HG là đường trung bình của tam giác BDC
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, AC, CD, DB. Tìm điều kiện của tứ giác ABCD để EFGH là: Hình chữ nhật
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF là đường trung bình của tam giác ABC
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có
HB = HD, GD = GC (gt)
Nên HG là đường trung bình của tam giác BDC
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC
cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA.
a) chứng minh tứ giác EFGH là hình bình hành
b) Gọi O là trung điểm EG, chứng minh F đối xứng H qua O
c) các đường chéo AC, BD, của tứ giác ABCD có điều kiện tứ giác EFGH là hình chữ nhật
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của DC
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành
Cho tứ giác ABCD. Gọi E, F, G ,H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tìm điều kiện của tứ giác ABCD để tứ giác EFGH là hình chữ nhật
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, AC, CD và BD.
a) Chứng minh rằng tứ giác EFGH là hình bình hành.
b) Tìm điều kiện của tứ giác ABCD để EFGH là hình chữ nhật.
a: Xét ΔBAD có
E là tđiểm của AB
H là tđiểm của BD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//AD và EH=AD/2(1)
Xét ΔACD có
F là trung điểm của AC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔACD
Suy ra: FG//AD và FG=AD/2(2)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EFGH là hình bình hành
cho tứ giác ABCD. gọi E,F,G,H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA.
a, chứng minh EFGH là hình bình hành.
b, tìm điệu kiện của tứ giác ABCD để tứ giác EFGH là hình chữ nhật
a: Xét ΔBAC có
E,F lần lượt là trung điểm của BA,BC
=>EF là đường trung bình
=>EF//AC và EF=AC/2
Xét ΔCDA có
G,H lần lượt là trung điểm của DC,DA
=>GH là đường trung bình
=>GH//AC và GH=AC/2
=>EF//GH và EF=GH
Xét tứ giác EFGH có
EF//GH
EF=GH
=>EFGH là hình bình hành
b: Để EFGH là hình chữ nhật thì HE vuông góc EF
=>AC vuông góc BD
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, AC, DC, DB. Biết rằng EFGH là hình thoi. Tứ giác ABCD có đặc điểm gì ?
Cho tứ giác ABCD. E là giao điểm của AB và CD. Gọi F là trung điểm của AC, G là trung điểm của BD. Chứng minh diện tích tam giác EFG = 1/4 diện tích tứ giác ABCD.