tìm các chữ số x,y,z biet xyz=xy.xz .7
tìm các chữ số x,y,z thỏa mãn: xyz=(x*y*z)^3
Tìm các chữ số x,y,z thoả mãn: xyz=(x+y+z)3
các bạn trả lời đầy đủ hộ mình nha mình xin cảm ơn
Tìm số có ba chữ số xyz. Biết rằng xyz = x! + y! + z!.
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Tìm x,y,z biet ax=by=cz va xyz=8/abc
Tìm các số nguyên dương x, y, z thỏa mãn: x+y+z=xyz
Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)
\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)
Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)
Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)
Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)
\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)
Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)
\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị
cho x , y ,z là các số nguyên dương tìm x,y,z biết x+y+z=xyz
Xét \(x\le y\le z\) vì x,y,z nguyên dương
\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)
\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)
- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )
- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))
- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))
Vậy......................................
\(\text{Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. }\)
Vì \(x,y,z\)nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Ta có: \(x+y+z=xyz\)
\(\Leftrightarrow\left(x\cdot100\right)+\left(y\cdot10\right)+\left(z\cdot1\right)=xyz\)
\(\Rightarrow z=0,1,2,3,4,5,6,7,8,9\)
\(\Rightarrow y=0,1,2,3,4,5,6,7,8,9\)
\(\Rightarrow x=1,2,3,4,5,6,7,8,9\)