\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge\frac{1}{\sqrt{3}}\)
Chứng minh BĐT trên bằng BĐT Cosi
ta có bđt cần chứng minh
\(\frac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\Leftrightarrow\sqrt{xy+z}+\sqrt{2\left(x^2+y^2\right)}\ge1+\sqrt{xy}\)
Áp dụng bđt bu nhi ta có
\(\sqrt{2\left(x^2+y^2\right)}\ge x+y\) (1)
mà x+y+z=1\(\Rightarrow xy+z=xy+z\left(x+y+z\right)=\left(z+x\right)\left(z+y\right)\)
áp dụng bu nhi a ta có \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\) (2)
từ (1) và (2) => \(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\ge x+y+z+\sqrt{xy}=1+\sqrt{xy}\)
Cho các số dương x,y,z . Chứng minh BĐT :
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{z^2x^2}+1}+\frac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
ko bt lm thi đừng CMT tầm bậy nhé !
bài lớp 10 bất đẳng thức mấy chú k hiểu là đúng r -______-''
hc o nha cho đó mk dg hc chi vaxma tốc độ
1/cho x>2014. Chứng minh bất đẳng thức sau:
\(\frac{\sqrt{x-2013}}{x+2}\) + \(\frac{\sqrt{x-2014}}{x}\)\(\le\)\(\frac{1}{2\sqrt{2015}}\)+\(\frac{1}{2\sqrt{2014}}\)(bằng cách đặt ẩn phụ để áp dụng BĐT Cauchy)
2/cho x,y,z>0. chứng minh BĐT sau:
\(\frac{x}{2x+y+z}\)+\(\frac{y}{x+2y+z}\)+\(\frac{z}{x+y+2z}\)\(\le\) 3/4 (bằng cách đặt ẩn phụ để áp dụng BĐT Cauchy)
các bạn giải thật kĩ giúp nha! nếu giải bằng cách đặt ẩn phụ để áp dụng BĐT Cauchy không được thì suy nghĩ cách khác giúp mình nhé. Mình đang cần gấp. Thanhks
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
Tìm hằng số a lớn nhất để BĐT sau đúng với mọi x,y,z dương
\(\frac{x}{\sqrt{y^2+z^2}}+\frac{y}{\sqrt{x^2+z^2}}+\frac{z}{\sqrt{x^2+y^2}}\ge a\)
Tìm hằng số a lớn nhất để BĐT sau đúng với mọi x,y,z dương
\(\frac{x}{\sqrt{y^2+z^2}}+\frac{y}{\sqrt{x^2+z^2}}+\frac{z}{\sqrt{x^2+y^2}}\ge a\)
cho x=y=z hoặc x=y,z ->0+ tìm ra a rồi cm là xong
Cho x,y,z,a,b,c>0.CMR:\(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
Áp dụng bđt cosi nha!!! thank nhìu!! Sẽ tick cho bn nhanh và đúng nhất! :))))
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{1}{\sqrt{x}+3\sqrt{y}}+\frac{1}{\sqrt{y}+3\sqrt{z}}+\frac{1}{\sqrt{z}+3\sqrt{x}}\ge\frac{1}{\sqrt{x}+2\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{y}+2\sqrt{z}+\sqrt{x}}+\frac{1}{\sqrt{z}+2\sqrt{x}+\sqrt{y}}\)
Xét vế trái :
Do a,b,c >0
Áp dụng tính chất dãy tỉ số:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự ta cũng có:
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{a+c}< \frac{c+b}{a+b+c}\)
Cộng vế với vế của các bđt ta đc:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c+b+a+c+b}{a+b+c}=2\left(1\right)\)
Xét vế phải ta có: a,b,c>0
Áp dụng bđt Cô-si:
\(a+b+c\ge2\sqrt{\left(a+b\right)c}\Rightarrow\frac{1}{\sqrt{\left(a+b\right)c}}\ge\frac{2}{x+y+z}\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\)
Tương tự ta có:
\(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z}\)
\(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng vế với vế của các bđt ta đc:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{z+x}}+\sqrt{\frac{z}{x+y}}\ge2\left(2\right)\)
Từ (1) (2) suy ra đpcm
@anh alibaba nguyễn
Đề: Cho x, y, z không âm và x + y + z = 3. Tìm min của \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
Trong bài này em sử dùng các bđt sau: \(\sqrt{a+b}+\sqrt{b+c}\ge\sqrt{b}+\sqrt{a+b+c}\)
và \(\sqrt{a}+\sqrt{c}\ge\sqrt{a+c}\)
Đẳng thức xảy ra khi a hoặc c = 0
Áp dụng vào ta có: \(A\ge\sqrt{y}+\sqrt{x+y+z}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\sqrt{3}\)
Đẳng thức em chả biết xét thế nào nữa:(
Èo, ko gõ cái quái gì cũng bị chờ duyệt-_- Thua olm.
Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)
Xét dấu nó thì e chỉ cần xét từng cái là được
Cái thứ nhất:
\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Cái thứ 2:
\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)
\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)
Kết hợp cả 2 điều kiện thì suy ra được
\(x=z=0;y=3\)
alibaba nguyễn à đúng rồi, ko giả sử thì không tìm được cách xét dấu đẳng thức hợp lí được:)