Tìm hằng số a lớn nhất để BĐT sau đúng với mọi x,y,z dương
\(\frac{x}{\sqrt{y^2+z^2}}+\frac{y}{\sqrt{x^2+z^2}}+\frac{z}{\sqrt{x^2+y^2}}\ge a\)
tìm giá trị lớn nhất của biểu thức
A=\(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\) với x≥1, y≥2 ,z≥3
Có ba số thực dương x, y, z. Chứng minh rằng:
\(\frac{\sqrt{x}+\sqrt{y}}{z}+\frac{\sqrt{y}+\sqrt{z}}{x}+\frac{\sqrt{z}+\sqrt{x}}{y}>\frac{2}{\sqrt{x}}+\frac{2}{\sqrt{y}}+\frac{2}{\sqrt{z}}\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
cho các số thực dương x,y,z thỏa mãn xyz=1 chứng minh rằng \(\frac{x}{\sqrt{x+\sqrt{yz}}}+\frac{y}{\sqrt{y+\sqrt{zx}}}+\frac{z}{\sqrt{z+\sqrt{xy}}}\ge\frac{3}{2}\)
1) Chứng minh : \(x^2+y^2\)≥\(2x\sqrt{yz}\) Với mọi x,y,z >0
2) Cho x+y+z = 2019 ;x,y,z >0
Tìm GTNN của P = \(\frac{x}{x+\sqrt{2019x+yz}}+\frac{y}{y+\sqrt{2019y+xz}}+\frac{z}{z+\sqrt{2019z+xy}}\)
Cho x, y, z là các số thực dương thỏa mãn \(xy+yz+xz=1\) . Chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Cho x,y,z là các số thực dương thoả mãn: x+y+z\(\le\)1
Tìm giá trị nhỏ nhất của \(A=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)