Tìm các số tự nhiên x thỏa mãn
x<11chia 10 +67chia30 +-7chia60
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
Viết các tập hợp sau rồi tìm số phần tử :
a) Tập hợp A các số tự nhiên X thỏa mãn : 7X . 7 = 0
b) Tập hợp B các số tự nhiên X thỏa mãn : 0 . X = 0
c) Tập hợp C các số tự nhiên X thỏa mãn : X + 2 = X - 2
DỄ LÉM ! AI NHANH MK TK CHO !
a) ta có: 7x7 = 0
49x = 0
=> x = 0
=> A = {0}
b) ta có: 0.x = 0
mà x là số tự nhiên
=> x thuộc N
=> B = { x thuộc N}
c) ta có: x + 2 = x - 2
=> x - x = - 2 - 2
\(\Rightarrow x\in\varnothing\)
\(\Rightarrow C=\left\{\varnothing\right\}\)
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
:D :D :D :D
Tìm các số tự nhiên X thỏa mãn: 1,23 < X < 7,2
Tìm các số tự nhiên x,y thỏa mãn 2/x+y/3=2
2/x + y/3 = 2
=> 2/x = 2 - y/3
= 2/x = 6-y/3
=> x(6-y) = 2.3
x(6-y) = 6
Do x∈N => x >= 0. Để x(6-y) = 6 thì x > 0
Mà 6>0 => 6-y > 0
Mà y∈ N => 6-y ∈ N*
Ta có bảng:
x | 1 | 2 | 3 | 6 |
6-y | 6 | 3 | 2 | 1 |
y | 0 | 3 | 4 | 5 |
Thử lại thỏa mãn.
Vậy (x,y) = (1,0); (2,3); (3,4); (6,5)
Tìm các số tự nhiên x, y thỏa mãn: \(5^x-2^y=1\)
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
Tìm các số tự nhiên x,y thỏa mãn x^4+4x+1=5y
Tìm các số tự nhiên x,y thỏa mãn \(5^x-2^y=1\)
\(5^x-2^y=1\left(a\right)\left(x;y\in N\right)\)
Ta thấy với \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) thì \(\left(a\right)\) thỏa mãn
\(\left(a\right)\Leftrightarrow5^x-1=2^y\)
Với \(y\ge3\left(y\in N\right)\)
\(\Rightarrow5^x-1=2^y⋮8\left(b\right)\)
- Nếu \(x=2k\left(k\in N\right)\) (x là số chẵn)
\(\Rightarrow5^x-1=25^k-1⋮3\left(25^k\equiv1\left(mod3\right)\Rightarrow25^k-1\equiv0\left(mod3\right)\right)\)
\(\Rightarrow\left(b\right)\) không thỏa mãn
- Nếu \(x=2k+1\left(k\in N\right)\) (x là số lẻ)
\(\Rightarrow5^x-1=5.25^k-1\equiv4\left(mod8\right)\left(5.25^k\equiv5\left(mod8\right)\right)\)
Nên với \(y\ge3\) không tồn tại \(\left(x;y\right)\) thỏa mãn \(\left(a\right)\)
Vậy có đúng 1 cặp nghiệm \(\left(x;y\right)=\left(1;2\right)\) thỏa mãn đề bài