tìm số nguyên a để
B= \(\dfrac{6a-5}{4a-10}\) có giá trị lớn nhất tìm giá trị đó
tìm số nguyên x đểB=42-|x| đạt giá trị lớn nhất
a) Tìm x,y biết: xy +12= x+ y b) Tìm số tự nhiên n để B=\(\dfrac{10n-3}{4n-10}\), có giá trị lớn nhất, tìm giá trị lớn nhất đó
Cho A = \(\dfrac{13}{x+5}\) . Tìm các số nguyên x để :
a, A có giá trị lớn nhất
b, A có giá trị bé nhất
Ta có : A = \(\dfrac{13}{x+5}\) => A = 13 : (x + 5) => x + 5 ∈ Ư(13) ∈ {-13;-1;1;13}
a , Để a có giá trị lớn nhất thì x + 5 phải là giá trị bé nhất và x + 5 ∈ N*
=> x + 5 = 1 => x = -4
b , Để A có giá trị bé nhất thì x + 5 phải là giá trị lớn nhất và x + 5 phải là số nguyên âm
=> x + 5 = -1 => x = -6
Cho phân số A=\(\dfrac{2.x-3}{x+5}\) (x là số nguyên)
a) tìm x để A là số nguyên
b) tìm x để A là số tự nhiên
c) tìm giá trị nhỏ nhất của A
d) tìm giá trị lớn nhất của A
e) tìm x để A=10
P=\(\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\)
tìm các giá trị nguyên lớn nhất để P có giá trị là số nguyên
\(\dfrac{\sqrt{x}-5}{\sqrt{x-3}}=1-\dfrac{2}{\sqrt{x}-3}=P\)
Để P nguyên thì \(2⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)
\(\begin{matrix}\sqrt{x}-3&-1&-2&1&2\\\sqrt{x}&-2\left(L\right)&1&4&5\\x&&1\left(tm\right)&16\left(tm\right)&25\left(tm\right)\end{matrix}\)
Mà x nguyên lớn nhất \(\Rightarrow x=25\)
Để P là số nguyên thì
căn x-3-2 chia hết cho căn x-3
=>căn x-3 thuộc Ư(-2)
mà x nguyên lớn nhất
nên căn x-3=2
=>x=25
\(P=\dfrac{\sqrt x-5}{\sqrt x -3}=\dfrac{\sqrt x-3-2}{\sqrt x -3}=1-\dfrac{2}{\sqrt x -3}\)
Để \(P \in Z \Leftrightarrow 2\vdots \sqrt x -3 \Rightarrow \sqrt x -3 \in \text{Ư(2)={1;-1;2;-2}}\)
\(\Rightarrow \sqrt x \in \text{{4;2;5;1}} \Rightarrow x \in \text{{16;4;25;1}}\)
\(\Rightarrow x_{max}=25\)
Tìm số nguyên n để 7/4n-5 có giá trị lớn nhất . tìm giá trị lớn nhất đó
Tìm giá trị của a để A=\(\dfrac{4a}{a^2+4}\) đạt giá trị lớn nhất.
Cho biểu thức A = 3/(x-1)
a) Tìm số nguyên x để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.
b) Tìm số nguyên x để A đạt giá trị lớn nhất và tìm giá trị lớn nhất đó.
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
Tìm x\(\in\)Z để
B=\(\left(\dfrac{\sqrt{x}+2}{2\sqrt{x}+x+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\) có giá trị nguyên
ĐK: x > 0
B = \(\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
⇔ B = \(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
⇔ B = \(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\) = \(\dfrac{2}{x-1}\)
Để B ∈ Z thì x - 1 ∈ Ư(2) = {-2;-1;1;2}
⇔ \(\left\{{}\begin{matrix}x-1=-2\\x-1=-1\\x-1=1\\x-1=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=-3\\x=-2\\x=2\\x=3\end{matrix}\right.\)
Vậy....