b2
a) 3/4 -5x <-1/4
b)5x-3-2x/2
c)2x-x(3x+1)<15-3x(x+2)
b1. Phân tích đthức -> nhân tử.
a) x^3 - 3x^2 - 4x +13
b) x^4 - 5x^2 +4
c) (x+y+z)^3 -x^3 - y^3 - z^3
d) 45+ x^3 -5x^2 - 9x
e) x^4 - 2x^3 - 3x^3 - 2x -3
b2. tìm GTLN hoặc GLNN
a) A = 2x^2 - 8x - 10 -> GTNN
b) B = 9x - 3x^2 -> GTLN
2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)
\(=2\left(x-2\right)^2-18\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy minA = - 18 <=> x = 2
b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy maxB = 27/4 <=> x = 3/2
Sửa đề:x3-3x2-4x+12
a,x3-3x2-4x+12
=(x3-3x2)-(4x+12)
=x2(x-3)-4(x-3)
=(x2-4)(x-3)
b,x4- 5x2 +4
x4-4x2-x2+4
(x4-x2)-(4x2+4)
x2(x2-1)-4(x2-1)
(x2-4)(x2-1)
Bài 1.
a) x3 - 3x2 - 4x + 12 ( mạn phép sửa 13 thành 12, chứ để 13 là không phân tích được :> )
= x2( x - 3 ) - 4( x - 3 )
= ( x - 3 )( x2 - 4 )
= ( x - 3 )( x - 2 )( x + 2 )
b) x4 - 5x2 + 4
Đặt t = x2
Đa thức <=> t2 - 5t + 4
= t2 - t - 4t + 4
= t( t - 1 ) - 4( t - 1 )
= ( t - 1 )( t - 4 )
= ( x2 - 1 )( x2 - 4 )
= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )
c) ( x + y + z )3 - x3 - y3 - z3
= ( x + y + z )3 - ( x3 + y3 + z3 )
= ( x + y + z )3 - [ ( x + y + z )3 - 3( x + y )( y + z )( z + x ) ] ( chỗ này bạn xem HĐT tổng ba lập phương nhé )
= ( x + y + z )3 - ( x + y + z )3 + 3( x + y )( y + z )( z + x )
= 3( x + y )( y + z )( z + x )
d) 45 + x3 - 5x2 - 9x
= ( x3 - 5x2 ) - ( 9x - 45 )
= x2( x - 5 ) - 9( x - 5 )
= ( x - 5 )( x2 - 9 )
= ( x - 5 )( x - 3 )( x + 3 )
e) x4 - 2x3 + 3x2 - 2x - 3 ( sửa -3x3 -> 3x2 )
= x4 - x3 - x3 + 3x2 - x2 + x2 - 3x + x - 3
= ( x4 - x3 + 3x2 ) - ( x3 - x2 + 3x ) - ( x2 - x + 3 )
= x2( x2 - x + 3 ) - x( x2 - x + 3 ) - 1( x2 - x + 3 )
= ( x2 - x - 1 )( x2 - x + 3 )
Bài 2.
A = 2x2 - 8x - 10
= 2( x2 - 4x + 4 ) - 18
= 2( x - 2 )2 - 18
2( x - 2 )2 ≥ 0 ∀ x => 2( x - 2 )2 - 18 ≥ -18
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -18 <=> x = 2
B = 9x - 3x2
= -3( x2 - 3x + 9/4 ) + 27/4
= -3( x - 3/2 )2 + 27/4
-3( x - 3/2 )2 ≤ 0 ∀ x => -3( x - 3/2 )2 + 27/4 ≤ 27/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 27/4 <=> x = 3/2
5x^3+5=0
b2.(x+5)-x^2-5x=0
a.
\(5x^3+5=0\)
\(5x^3=-5\)
\(x^3=-1\)
\(x^3=\left(-1\right)^3\)
\(\Rightarrow x=-1\)
b.
\(2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\)
\(-x^2-3x+10=0\)
\(-x^2+5x-2x+10=0\)
\(-x\left(x-5\right)-2\left(x-5\right)=0\)
\(\left(x-5\right)\left(-x-2\right)=0\)
\(\orbr{\begin{cases}x-5=0\\-x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\-x=2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
5x3 + 5 = 0
<=> 5( x3 + 1 ) = 0
<=> x3 + 1 = 0
<=> x3 = -1
<=> x3 = (-1)3
<=> x = -1
2( x + 5 ) - x2 - 5x = 0
<=> 2( x + 5 ) - ( x2 + 5x ) = 0
<=> 2( x + 5 ) - x( x + 5 ) = 0
<=> ( x + 5 )( 2 - x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
a. A= x (x+y) - x (y-x) với x= -3; y=2
b. B= 4x (2x+y) + 2y (2x+y) - y (y+2x) với x= 1/2 , y= -3/4
B2:
A= 4 (x-6) - 5x (x+1) + 8 (x^2 - x - 2) với x= -1
a, \(A=x\left(x+y\right)-x\left(y-x\right)=x^2+xy-xy+x^2=2x^2\)
Thay x vào ta có : \(2\left(-3\right)^2=2.9=18\)
y bị lược bỏ rồi mà bạn hay chỗ x^2 + xy - xy + x^2 thay vào à ? lạ !?!
b, \(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)=8x^2+4xy+4xy+2y^2-y^2-2xy\)
\(=8x^2+6xy+y^2\)
Thay x = 1/2 ; y = -3/4 ta có : Tự thay nhé -> P/s
a)
\(A=x.\left(x+y\right)-x.\left(y-x\right)\)
\(A=x^2+x.y-x.y+x^2\)
\(A=2.x^2\)
Thay x= -3 vào biểu thức A ta được ;
\(A=2.\left(-3\right)^2=2.9=18\)
b) \(B=4.x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)\)
\(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(2x+y\right)\)
\(B=\left(2x+y\right).\left(4x+2y-y\right)\)
\(B=\left(2x+y\right).\left(4x+y\right)\)
\(B=8x^2+2xy+4xy+y^2\)
\(B=8x^2+6xy+y^2\)
Thay \(x=\frac{1}{2}\) và \(y=\frac{-3}{4}\) vào biểu thức B ta được :
\(B=8.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}.\left(\frac{-3}{4}\right)+\left(\frac{-3}{4}\right)^2\)
\(B=2+\left(\frac{-9}{4}\right)+\frac{9}{16}=\frac{5}{16}\)
Bài 2 :
\(A=4\left(x-6\right)-5x\left(x+1\right)+8\left(x^2-x-2\right)\)
\(A=4x-24-5x^2-5x+8x^2-8x-16\)
\(A=-9x-40+3x^2\)
Thay x=-1 vào biểu thức A ta được :
\(A=-9.\left(-1\right)-40+3.\left(-1\right)^2\)
\(A=9-40+3=-28\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt ^^
\(\)
Phân tích đa thức thành nhân tử:
a) (3x - 1)2 - 16
b) (5x - 4)2 - 49x2
c) (2x + 5)2 - ( x - 9)2
d) (3x + 1)2 - 4(x - 2)2
e) 9(2x + 3)2 - 4(x + 1)2
f) 4b2c2 - (b2 + c2 - a2) 2
g) (ax + by)2 - (ay + bx)2
h) (a2 + b2 - 5)2 - 4(ab + 2)2
i) (4x2 - 3x + 18)2 - (4x2 + 3x)2
k) 9(x + y - 1)2 - 4(2x + 3y + 1)2
e) -4x2 + 12xy - 9x2 + 25
m) x2 - 2xy + y2 - 4m2 + 4mn - n2
\(a,=\left(3x-5\right)\left(3x+3\right)=3\left(x+1\right)\left(3x-5\right)\\ b,=\left(5x-4-7x\right)\left(5x-4+7x\right)=\left(-2x-4\right)\left(12x-4\right)\\ =-8\left(x+2\right)\left(x-3\right)\\ c,=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\\ =\left(x+14\right)\left(3x-4\right)\\ d,=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\\ =\left(x+5\right)\left(5x-3\right)\\ e,=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\\ =\left(4x+7\right)\left(8x+11\right)\\ f,=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\\ =\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]\\ =\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\\ g,=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\\ =\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
\(h,=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\\ =\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\\ =\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
a: \(\left(3x-1\right)^2-16\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x+3\right)\left(3x-5\right)\)
\(=3\left(x+1\right)\left(3x-5\right)\)
b: \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
\(=-8\left(x+2\right)\left(3x-1\right)\)
B1: Tìm x biết:
a,(3x-5).(7-5x)-(5x+2).(2-3x)=4
b,(x+2).(x^2-2x+4).(x^3+3).x=14
B2 Cho biểu thức:
M=a.(a+b).(a+c)
N=b.(b+c).(b+a) Chứng minh rằng: nếu a+b+c=0 thì M=N=P
P=c.(c+a).(c+b)
Mong các bạn giải hộ mình nha!!!!!!!!!!!!!!!!!!!! Mình cảm ơn bạn.
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
B1:Tìm x
a) (x-7).(x+3)<0
b) (2x+6).(x-5) nhỏ hơn hoặc bằng 0.
B2:Tìm x
a) (5x+8)-(2x-15)+21=2x-5
b) 3.(x-5)-4(x+8)=-12
c) |2x+6|-(-5)^2=3
+. là dấu nhân"x" nhé!
Bài 1L
a) \(\left(x-7\right)\left(x+3\right)< 0\)
TH1:
\(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -3\end{cases}}}\)( loại )
TH2:
\(\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}\Leftrightarrow}-3< x< 7}\)( chọn )
Vậy \(-3< x< 7\)
Bài 2:
a) \(\left(5x+8\right)-\left(2x-15\right)+21=2x-5\)
\(\Leftrightarrow5x+8-2x+15+21=2x-5\)
\(\Leftrightarrow5x-2x-2x=-5-21-8-15\)
\(\Leftrightarrow x=-49\)
Vậy ...
Bài 1:
b) \(\left(2x+6\right)\left(x-5\right)\le0\)
TH1:
\(\hept{\begin{cases}2x+6\le0\\x-5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x\ge5\end{cases}}}\)( loại )
TH2:
\(\hept{\begin{cases}2x+6\ge0\\x-5\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le5\end{cases}\Leftrightarrow}-3\le x\le5}\)
Vậy \(-3\le x\le5\)
Phân tích các đa thức sau thành nhân tử:
a) x2 - 9 - x2 (x2 - 9) d) x2 + 5x + 6 h) a2 + b2 + 2a – 2b – 2ab
b) x2(x-y) + y2(y-x) e) 3x2 – 4x – 4 i) (x + 1)2 – 2(x + 1)(y – 3) + (y – 3)2
c) x3+27+(x+3)(x-9) g) x4 + 64y4 k) x2(x + 1) – 2x(x + 1) + x + 1
Mình đang cần gấp ạ
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
Câu 1. Phân tích đa thức thành nhân tử
a) x 2 + 4xy + 3y2
b) x 3 – y 3 + z3 + 3xyz
c) x 4 + 2x2 – x + 2
Câu 2. Chứng minh rằng a = b = c nếu có một trong các điều kiện sau:
a) a 2 + b2 + c2 = ab + bc + ca
b) (a + b + c)2 = 3(a2 + b2 + c2 )
c) (a + b + c)2 = 3(ab + bc + ca)
Câu 3. Chứng minh rằng với số tự nhiên n thì A = n(n+1)(n+2)(n+3) + 1 là số chính phương.
Câu 4. Tìm x thỏa mãn a) (x – 1)3 + (x – 3)3 = (2x – 4)3 b) (2x – 1)3 + (x + 3)3 = (3x + 2)3 c) (2x + 1)3 + (3x + 3)3 + (-5x - 4)3 = 0