Cho ∆ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a) C/m: ∆AED~∆ACB.
b) C/m: HE×HC=HD×HB.
c) C/m: H, K, M thẳng hàng.
Bài 7: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H .Đường vuông góc với AB tại B
và đừơng vuông góc với AC tại C cắt nhau tại K.Gọi M là trung điểm của BC.
Chứng minh rằng :
a) ADB ∼
AEC; AED ∼
ACB.
b) HE.HC = HD. HB
c) H,M,K thẳng hàng
d) Tam giác ABC phải có điều kiện gì thì tứ giác BACK sẽ là hình thoi? Hình chữ nhật?
Bài 8:Cho tam giác ABC cân tại A , trên BC lấy điểm M.Vẽ ME , MF vuông góc với AC,AB,Kẻ
đường cao CA . CMR:
a) Tam giác BFM đồng dạng với tam giác CEM.
b) Tam giác BHC đồng dạng với tam giác CEM.
c) ME + MF không thay đổi khi M di động trên BC.
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
c/ chứng minh H, K , M thẳng hàng
chủ yếu câu c giúp giùm mình nha
c) Ta có AB vuông góc BK; AB vuông góc CH => BK//CH
tương tự BH//CK => tứ giác BHCK là hình bình hành mà M là trung điểm BC => M là trugn điểm HK => H,M,K thẳng hàng
b)xét tam giác HEB và tam giác HDC có:
{góc HEB =góc HDC(=90 độ)
góc HEB=góc HDC(đối đỉnh)
=>tam giác HEB~Tam giác HDC(g.g)
=>HE/HD=HB/HC<=>HE.HC=HD.HB
c)ta có BD vuông AC và CK vuông AC=>BD // CK,BH//CK
ta lại có CE vuông AB và BK vuông AB=>CE//BK,CH//Bk
mà tứ giác BHCK có BH//CK và CH//BK=>BHCK là hbh(dhnb)
mà M là trung điểm của đường chéo BC
=>M cũng là trung điểm của đường chéo HK
=>H,M,K thẳng hàng.
ai biết giải dùm mình câu này với
d)tam giác ABC phải có điều kiện dì thì tứ giác BHCK là hình thoi?hình chữ nhật?
giúp mình với ạ
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
a, Xét tam giác ADB và tam giác AEC có:
^A chung
^AEC = ^ADB
\(\Rightarrow\) ADB đồng dạng AEC
b,Xét tam giác HEB và tam giác HDC có:
^EHB = ^DHC
^HEB = ^HDC
\(\Rightarrow\) tam giác HEB đồng dạng tam giác HDC
\(\Rightarrow\) HE.HC = HD.HB
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
a) xét tam giác ADB và AEC có:
góc A chung
góc ADB= góc AEC (=90 độ)
=> ADB đồng dạng vs AEC (g.g)
b) xét tam giác EHB và tam giác DHC có:
EHB= DHC (2 góc đối đỉnh)
HEB- HDC (=90độ)
=> EHB =DHC (g.g)
=> HE/HB = HD/HC
=> HE.HC=HD.HB
a) xét tam giác ADB và AEC có:
góc A chung
góc ADB= góc AEC (=90 độ)
=> ADB đồng dạng vs AEC (g.g)
b) xét tam giác EHB và tam giác DHC có:
EHB= DHC (2 góc đối đỉnh)
HEB=HDC (=90độ)
=> EHB đồng dạng DHC (g.g)
=> HE/HB = HD/HC
=> HE.HC=HD.HB
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
a: Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>H,M,K thẳng hàng
b: BHCK là hình thoi khi BH=HC
=>AB=AC
Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC. Chứng minh rằng:
a. Tam giác ADB ~ tam giác ACE, tam giác AED~tam giác ACB
b. HE.HC=HD.HB
c. H,M,K thẳng hàng
Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC. Chứng minh rằng:
a. Tam giác ADB ~ tam giác ACE, tam giác AED~tam giác ACB
b. HE.HC=HD.HB
c. H,M,K thẳng hàng