a=1+1/3+1/6+1/10+...+1/4950
cho A= 1/3+1/6+1/10+....+1/4950.So sánh A với 1/4
\(A=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{9900}\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\cdot\dfrac{49}{100}=\dfrac{98}{100}>\dfrac{1}{4}\)
Tính nhanh :
A = 1/3 + 1/6 + 1/10 + ... + 1/4950
A = \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{4950}\)
A = \(2.\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\right)\)
A = \(2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
A = \(2.\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
A = \(1-\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\)
~ Chúc bạn học giỏi ! ~
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{4950}\)
\(\Rightarrow2A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{50}\)
\(\Rightarrow A=\dfrac{49}{50}\)
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{4950}\)
\(\dfrac{1}{2}A=\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{4950}\right)\)
\(\dfrac{1}{2}A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(\dfrac{1}{2}A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{100}\)
\(\dfrac{1}{2}A=\dfrac{49}{100}\)
\(A=\dfrac{49}{50}\)
(1-1/3).(1-1/6).(1-1/10).....(1-1/4950)
Ta có công thức tổng quát sau:
\(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}\)
\(=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)
Ta có: \(\left(1-\frac13\right)\left(1-\frac16\right)\cdot\ldots\cdot\left(1-\frac{1}{4950}\right)\)
\(=\left(1-\frac26\right)\left(1-\frac{2}{12}\right)\cdot\ldots\cdot\left(1-\frac{2}{9900}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\left(1-\frac{2}{3\cdot4}\right)\cdot...\cdot\left(1-\frac{2}{99\cdot100}\right)\)
\(=\frac{\left(2+2\right)\left(2-1\right)}{2\left(2+1\right)}\cdot\frac{\left(3+2\right)\left(3-1\right)}{3\left(3+1\right)}\cdot\ldots\cdot\frac{\left(99+2\right)\left(99-1\right)}{99\left(99+1\right)}\)
\(=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\ldots\cdot\frac{101\cdot98}{99\cdot100}\)
\(=\frac{4\cdot5\cdot\ldots\cdot101}{3\cdot4\cdot\ldots\cdot100}\cdot\frac{1\cdot2\cdot\ldots\cdot98}{2\cdot3\cdot\ldots\cdot99}=\frac{101}{3}\cdot\frac{1}{99}=\frac{101}{297}\)
A=(1-1/3)x(1-1/6)x(1-1/10)x(1-1/15)x....x(1-1/4950)
D= 1/3+1/6+1/10+1/15+...+1/4950
D=1/3+1/6+1/10+1/15+......+1/4950
=2x(1/6+1/12+1/20+1/30+……+1/9900)
=2x(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+……+1/99-1/100)
=2x(1/2-1/100)
=1-1/50
=49/50
**** nhé
A=1+3+6+10+...+4851+4950 = ?
Tính: A = 1 + 3 + 6 + 10 +... + 4851 + 4950
Tinh A= 1+3+6+10+...+4851+4950=?
A=1+3+6+10+...+4851+4950
2A=2+6+12+20+...+9702+9900
2A=1.2+2.3+3.4+4.5+...+98.99+99.100
Xét B=1.2+2.3+3.4+4.5+...+98.99+99.100
3B=1.2.3+2.3(4−1)+3.4(5−2)+...+99.100(101−98)
3B=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+99.100.101−98.99.100
3B=99.100.101
B=333300
Thay B vào A ta được:
2A=333300
A=166650
Tính nhanh 1/3+1/6+ 1/10 + 1/15+ .....+1/4950
1/3+1/6+1/10+1/15+......+1/4950
=2x(1/6+1/12+1/20+1/30+……+1/9900)
=2x(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+……+1/99-1/100)
=2x(1/2-1/100)
=1-1/50
=49/50
**** nhé
Đáp án là 49/50 nha hatsune miku
Chúc bạn học tốt!