Cm vs mọi a,b ta có:a2+8.5b2+34>=4ab+2b+8a
Cm vs mọi a,b ta có
a2+8.5b2+34>=4ab+2b+8a
\(2a^2+17b^2-8ab-4b-16a+68\ge0\)
\(\Leftrightarrow\left(a^2-8ab+16b^2\right)+\left(a^2-16a+64\right)+\left(b^2-4b+4\right)\ge0\)
\(\Leftrightarrow\left(a-4b\right)^2+\left(a-8\right)^2+\left(b-2\right)^2\ge0\) (đúng)
cho a và b thỏa mãn 2b^2+5b^2-4ab+14b-8a+11=0
mk viết thiếu nhé dưới là
so sánh A=a13+b15
B=a15+b13
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
Chứng minh rằng với mọi số a,b,c ta luôn có :
a) a2 + 5b2 - 4ab + 2a - 6b + 3 > 0
b) a2 + 2b - 2ab + 2a - 4b + 2 >0
CM
a;( A+B)^2=(A-B)^2+4AB
b:(A-B)^2=(A+B)^2-4AB
giúp mik câu này vs
a,
Ta có : \(VP=\left(A-B\right)^2+4AB=A^2-2AB+B^2+4AB=A^2+2AB+B^2=\left(A+B\right)^2\)=> \(\left(A+B\right)^2=\left(A-B\right)^2+4AB\) ( đpcm )
Vậy \(\left(A+B\right)^2=\left(A-B\right)^2+4AB\).
b,
Ta có : \(VP=\left(A+B\right)^2-4AB=A^2+2AB+B^2-4AB=A^2-2AB+B^2=\left(A-B\right)^2\)
=> \(\left(A-B\right)^2=\left(A+B\right)^2-4AB\)
Vậy \(\left(A-B\right)^2=\left(A+B\right)^2-4AB\).
B)2a2-2ab-2a+2b
C)2mn+2+2m+2n
D)4a3b+4ab3+8a2+b2-4ab
Phân tích thành nhân tử
a,b là các số nguyên dương thoả mãn \(a^2+4ab-8b^2-4b+1=0\)
CM: 2b-a là số chính phương
Tìm GTNN của
a/A=\(a^2+5b^2-4ab-2b+5\)
b/B=\(\left(x-y\right)^2+\left(y-3^{ }\right)^2+\left(x-3\right)^2+2021\)
Ai giúp mk vs ạ ai nhanh mk tick nha :3
b: \(B\ge2021\forall x,y\)
Dấu '=' xảy ra khi x=y=3
Vì a>0; b>0 nên a + b \geq 4ab1+ab4ab1+ab
\Leftrightarrow (a + b)(1 + ab)\geq 4ab
\Leftrightarrow a + b + a^2b+ab^2\geq 4ab
\Leftrightarrow a + b + a^b + ab^2 - 4ab\geq 0
\Leftrightarrow (a^2b - 2ab + b) + (ab^2 - 2ab +a) \geq 0
\Leftrightarrow b(a^2 -2a + 1) + a(b^2 - 2B + 1)\geq 0
\Leftrightarrow b(a-1)^2 + a(b-1)^2\geq 0
\Rightarrow Bất đẳng thức đúng\Rightarrow đpcm.