cho hệ phương trình ax^2 +bx +c =0 với a khác 0 và 5a +2c=b chứng minh phương trình có nghiệm
cho phương trình ax^2+bx+c=0 với các số a,b,c là các số thực nghiệm khác 0 và thỏa mãn điều kiện a+b+2c=0. Chứng minh rằng phương trình trên luôn có nghiệm trên tập số thực
Đặt \(f\left(x\right)=ax^2+bx+c\).
\(f\left(0\right)=c;f\left(1\right)=a+b+c\)
Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).
cho 5a+2c=b. Chứng minh phương trình ax2 + bx+c=0 có nghiệm
\(\Delta\) = b2 - 4ac = (5a + 2c)2 - 4ac = 25a2 + 20ac + 4c2 - 4ac = 25a2 + 16ac + 4c2
= 9a2 + (16a2 + 16ac + 4c2)
= 9a2 + (4a + 2c)2 \(\ge\) 0 với mọi a; c
=> Pt đã cho luôn có nghiệm
cho a,b.c là 3 só thực thỏa mãn 5a+3b+2c = 0.Chứng minh rằng phương trình ax^2 +bx+c = 0 luôn có nghiệm
Chứng minh phương trình \(ax^2+bx+c=0\) luôn luôn có nghiệm với mọi tham số a,b,c trong trường hợp \(5a+4b+6c=0\)
Ta có \(b=\dfrac{-6c-5a}{4}\).
Ta cần cm \(b^2-4ac\ge0\Leftrightarrow\dfrac{\left(6c+5a\right)^2}{16}\ge4ac\Leftrightarrow36c^2+25a^2-4ac\ge0\Leftrightarrow\left(4a-c\right)^2+35c^2+9a^2\ge0\).(luôn đúng)
Cho phương trình: ax2 + bx + c = 0, (a, b, c là các hệ số và a >0).
Chứng minh rằng nếu b > a + c thì phương trình luôn có hai nghiệm phân biệt.
Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)
Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)
Hay \(\Delta>\left(a-c\right)^2\ge0\)
Vậy ta có điều phải chứng mình
b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?
bình phương 2 vế nhé bạn
chứng tỏ phương trình \(ax^2+bx+c=0\) có nghiệm nếu a, b,c thỏa điều kiện: 5a-b+2c=0 và a≠0
detal=\(b^2-4ac\)
để phương trình có no khi và chỉ khi detal\(:\Delta\ge0\)
ta cos5a-b+2c=0
=>b=5a+2c=>\(b^2=4c^2+20ac+25a^2\)
=>\(\Delta=4c^2+16ac+25a^2=\left(2c-4a\right)^2+9a^2\ge0\)=>điều phải chứng minh
Cho 3 số phân biệt a,b,c\(\in\)R . Chứng minh rằng phương trình:
\(ax^2+bx+c=0\) luôn có nghiệm nếu \(\dfrac{5}{4}a+\dfrac{3}{2}b+2c=0\)
Đặt \(f\left(x\right)=ax^2+bx+c\)
Hàm f(x) liên tục trên R
Ta có: \(f\left(1\right)=a+b+c\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{a}{4}+\dfrac{b}{2}+c\)
\(\Rightarrow f\left(1\right)+f\left(\dfrac{1}{2}\right)=\dfrac{5a}{4}+\dfrac{3b}{2}+2c=0\)
\(\Rightarrow f\left(1\right)=-f\left(\dfrac{1}{2}\right)\)
\(\Rightarrow f\left(1\right).f\left(\dfrac{1}{2}\right)=-\left[f\left(1\right)\right]^2\le0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left[\dfrac{1}{2};1\right]\) hay pt đã cho luôn có nghiệm
chứng tỏ phương trình \(ax^2+bx+c=0\) có nghiệm nếu a, b,c thỏa điều kiện: 5a-b+2c=0 và a\(\ne\)0
Chứng minh rằng với a, b, c khác 0, ít nhất một trong các phương trình sau có nghiệm.
\(ax^2+2bx+c=0\),\(bx^2+2cx+a=0\),\(cx^2+2ax+b=0\)
\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)
\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)
\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm
\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm