cho B=1.2.3....2022(1+1/2+1/3+....+1/2022)<chứng minh rằng B chia hết cho 2021
Cho 𝐵 = 1.2.3. . . .2022. (1 + 1/2 + 1/3 +⋅⋅⋅ + 1/2022 ) Chứng minh rằng B chia hết cho 2023.
cho A=1+2022+2022^2+2022^3 +2022^4+...+2022^2016 + 2022^2017
và B= 2022^2018-1 . so sánh A và B
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
B=1+1/2.(1+2)+1/3.(1+2+3)+...+1/2022.(1+2+3+...+2022)
-Ta có công thức với n∈N* thì:\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right)\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(B=1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+...+\dfrac{1}{2022}.\left(1+2+3+...+2022\right)\)
\(=1+\dfrac{1}{2}.\dfrac{2.3}{2}+\dfrac{1}{3}.\dfrac{3.4}{2}+...+\dfrac{1}{2022}.\dfrac{2022.2023}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2023}{2}\)
\(=\dfrac{2+3+4+...+2023}{2}=\dfrac{1+2+3+4+...+2022}{2}=\dfrac{\dfrac{2022.2023}{2}}{2}=10222626,5\)
so sánh A = 2022^2023 + 3/2022^2022 - 1 và B = 2022^2023 - 2019/2022^2022 - 2
So sánh 2 phân số
A = \(\dfrac{2022^{2022}+1}{2022^{2021}+1}\) ; B = \(\dfrac{2022^{2023}+1}{2021^{2022}+1}\)
1) Tìm GTNN của biểu thức A= (|x| + 1)^10 + 2023
2) So sánh A và B:
A = 2022^2022 + 1 / 2022^2023 + 1 và B = 2022^2021 + 1 / 2022^2022 + 1
3) Thực hiện phép tính 1 cách hợp lí:
5^16 . 27^7/125^5 . 9^11
Do em ko biết viết phân số và mũ nên em viết hơi khó đọc mong mọi người thông cảm!😥
Cảm ơn mọi người giải giúp!
Đây nhé bé
Câu1
Vì \(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).
Suy ra:
\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)
Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).
\(\Rightarrow\) Giá trị nhỏ nhất của \(A\) là \(\boxed{2024}\), đạt tại \(x = 0\).
Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )
Đặt \(n = 2022\). Khi đó:
\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)
Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).
Ta gọi k là luỹ thừa của cơ số
\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)
Xét hiệu:
\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)
Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)
Do đó:
\(A = a_{2022} < a_{2021} = B .\)
\(\Rightarrow B>A\)
Câu3
Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).
\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)
Vậy kết quả bằng \(\frac{5}{3}\).
Câu 3:
\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)
\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)
\(=\frac53\)
Câu 2:
\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)
\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)
Ta có: \(2022^{2023}+1>2022^{2022}+1\)
=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)
=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)
=>2022A<2022B
=>A<B
Câu 1:
\(\left|x\right|\ge0\forall x\)
=>\(\left|x\right|+1\ge1\forall x\)
=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)
=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)
Dấu '=' xảy ra khi x=0
Bài 2:
A = \(\frac{2022^{2022}+1}{2022^{2023}+1}\)
A = \(\frac{2022^{2022}+1}{2022^{2023}+1}\) < \(\frac{2022^{2022}+1+2021}{2022^{2023}+1+2021}\)
A < \(\frac{2022^{2022}+\left(1+2021\right)}{2022^{2023}+\left(1+2021\right)}\)
A < \(\frac{2022^{2022}+2022}{2022^{2023}+2022}\)
A < \(\) \(\frac{2022.\left(2022^{2021}+1\right)}{2022.\left(2022^{2022}+1\right)}\)
A < \(\frac{2022^{2021}+1}{2022^{2022}+1}\) = B
Vậy A < B
a)2022.2023-2022/2021.2022+2022
b)1999.2000-1/1998.1997+3997
c)(1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
help me
tui làm được câu c thui
c) (1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
a: \(\frac{2022\cdot2023-2022}{2021\cdot2022+2022}\)
\(=\frac{2022\left(2023-1\right)}{2022\left(2021+1\right)}\)
\(=\frac{2022\cdot2022}{2022\cdot2022}=1\)
c: \(\left(1-\frac12\right)\left(1-\frac13\right)\cdot\ldots\cdot\left(1-\frac{1}{2022}\right)\left(1-\frac{1}{2023}\right)\)
\(=\frac12\cdot\frac23\cdot\ldots\cdot\frac{2021}{2022}\cdot\frac{2022}{2023}\)
\(=\frac{1}{2023}\)
Cho 2022 số tự nhiên khác 0 a(1), a(2), a(3), a(4),..., a(2021), a(2022) thỏa mãn:
1/a(1) + 1/a(2) + 1/a(3) + ... + 1/a(2021) + 1/a(2022) = 1. Chứng minh rằng tồn tại ít nhất một số trong 2022 số đã cho là số chẵn
Giả sử tất cả các số đã cho đều lẻ
=>Quy đồng, ta được:
\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)
Tử có 2022 số hạng, mẫu là số lẻ
=>A là số chẵn khác 1
=>Trái GT
=>Phải có ít nhất 1 số là số chẵn