cho a, b, c, d khác 0,c+d=1 và \(\frac{c}{a}+\frac{d}{b}=\frac{1}{ac+bd}\)
CMR a=b
bài 1:
a) cho a,b,c khác 0 và \(a^2\).CMR: \(\frac{a^2+c^2}{b^2+d^2}=\frac{c}{b}\)
b) cho a,b,c,d khác 0 và \(b^2\) =ac, \(c^2\) =bd. CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)
cho \(^{b^2=ac,c^2=bd}\)với b,c,d khác 0 và b+c+d=0 CMR:
\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
b2 = ac \(\Rightarrow\frac{a}{b}=\frac{b}{c}\)( 1 )
c2 = bd \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Vậy ...
minh moi dang cau moi giup minh dc khong
Cho các số a;b;c;d Khác 0 và thỏa mãn : b2=ac; c2=bd; b3+c3+d3 khác 0
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Cho tỷ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ( b,d khác 0 )
CMR : \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\)\(a=bk\), \(c=dk\)
Ta có :
+) \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\)(1)
+) \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right)k^2}{b^2+d^2}=k^2\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)
_Chúc bạn học tốt_
Cách này có vẻ ngắn gọn hơn.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (1)
Mặt khác \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\) (2)
Từ (1) và (2) suy ra đpcm: \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Bài 1 : Cho 4 số a , b ,c khác 0 thỏa mãn \(^2=ac;c^2=bd;b^3+c^3+d^3\ne0\)
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2 : Cho a , b , c , d > 0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Bài 1:
Chúc bạn học tốt!
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
Bài 2:
CM vế thứ nhất:
Với $a,b,c,d>0$:
\(\left\{\begin{matrix} \frac{a}{a+b+c}>\frac{a}{a+b+c+d}\\ \frac{b}{b+c+d}>\frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}>\frac{c}{a+b+c+d}\\ \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\end{matrix}\right.\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)
CM vế thứ 2:
Xét hiệu \(\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{a(a+b+c+d)-(a+d)(a+b+c)}{(a+b+c)(a+b+c+d)}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0\) với mọi $a,b,c,d>0$
\(\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Hoàn toàn tương tự:
\(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}; \frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}; \frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}\)
Cộng theo vế:
\(\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2\)
Ta có đpcm.
bài 1:
cho a,b,c , d khác 0 và \(b^2\)=ac, \(c^2\) =bd. CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
bài 2:
tìm các số tự nhiên a và b thỏa mãn: \(\frac{5a+7b}{6a+5b}=\frac{29}{28}\) và (a,b)=1
co a,b ,c ,d là 4 số khác nhau và khác 0 thỏa mãn: b^2=ac; c^2=bd và b^3+c^3+d^3\(\ne\)0
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\frac{a}{d}\)
Cho a, b, c, d là 4 số khác 0 thõa mãn b2 = ac và c2 = bd.
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Ta có :
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{c}{d}=\frac{b}{c}\Rightarrow\frac{c^3}{d^3}=\frac{b^3}{c^3}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\left(3\right)\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Bài 1) a) Cho a,b,c khác 0 và a2 + bc
CMR: \(\frac{a^2+c^2}{b^2+d^2}\) = \(\frac{c}{b}\)
b) Cho a,b,c,d khác 0 bà b2 = ad, c2 = bd
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)