Cho ∆ABC vuông tại A,kẻ phân giác BK của góc B(K thuộc AC),kẻ AF vuông góc với BK tại H và F thuộc BC A) chứng minh : ∆BHA=∆BHF B)chứng minh :FK vuông góc với BC C)chứng minh :AK
cho tam giác ABC vuông tại A, kẻ phân giác BK của góc B (K thuộc AC ), kẻ AE vuông góc với BK tại H và E thuộc BC
a. vẽ hình
b. chứng minh : tam giác BHA = tam giác BHE
c. chứng minh : EK vuông góc BC
d. chứng minh : AK < KC
giúp mình với ạ ,tối mình nộp rồi
b: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
góc ABH=góc EBH
=>ΔBHA=ΔBHE
c: ΔBHA=ΔBHE
=>BA=BE
Xét ΔBAK và ΔBEK có
BA=BK
góc ABK=góc EBK
BK chung
=>ΔBAK=ΔBEK
=>góc BEK=góc BAK=90 độ
=>EK vuông góc bC
d: AK=KE
KE<KC
=>AK<KC
3. Cho tam giác ABC vuông tại A, phân giác BF (F thuộc AC). Kẻ CH vuông góc với BF tại H . Lấy E sao cho H là trung điểm của EF. Kẻ FK vuông góc với BC (K thuộc BC). a) Chứng minh: CE = CF; BA = BK b) AK // CH c) CH, FK, AB đồng quy tại một điểm
a, tam giác vuông CHF=CHE (c.g.c) => CF=CE => Tam giác CEF cân tại C
gọi O là giao điểm của Ak và BF
tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK
BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180
=> AOB=KOB=90=> BF vuông AK
=> AK//HC ( cùng vuông BF)
b, tam giác vuông ABF=KBF => AF=FK
cạnh huyền FC > FK => FC > FA
c, gọi D là giao điểm AB;CH
tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F
mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này
=> Ba đường thẳng CH, FK,AB đồng quy
Cho tam giác ABC vuông tại A, kẻ phân giác BD của góc B(D thuộc AC),kẻ AH vuông góc với BD(H thuộc BD), AH cắt Bc tại E
a. chứng minh: tam giác BHA= tam giác BHE
b. chứng minh ED vuông góc với BC
c chứng minh AD<DC
d. kẻ AK vuông góc với BC(k thuộc BC). chứng minh:AE là phân giác của góc CAK
Bạn xem lời giải bài tương tự tại đường link dưới nhé:
Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC vuông tại A, kẻ phân giác BD của góc b (D thuộc AC). Từ A kẻ AH vuông góc BD (H thuộc BD), tia AH cắt BC tại E.
A) Chứng minh : Tam giác BHA=tam giác BHE
B) Chứng minh : ED vuông góc BC
C) Kẻ AK vuông góc BC ( K thộc BC). Chứng minh : AE là tia phân giác của góc CAK
các bạn hãy giúp mình làm nha !
a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔBHA=ΔBHE(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔBAD và ΔBED có
BA=BE(cmt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
cho tam giác abc vuông tại a kẻ phân giác bd cảu góc b ( d thuộc ac) kẻ ah vuông góc với bd ( h thuộc Bd) ah cắt bc tại e a, chứng minh tam giác bha =tam giác bhe b, chứng minh ed vuông góc với bc c, chứng minh ad nhỏ hơn dc d, kẻ k vuông góc với bc ( k thuộc bc) chứng minh ae là phân giác của góc bak
Cho tam giác ABC vuông tại A,kẻ phân giác BD của góc B(D thuộc AC),kẻ AH vuông góc với BD(H thuộc BD),AH cắt BC tại E.
a)Chứng minh:tam giác BHA=tam giác BHE.
b)Chứng minh:ED vuông góc với BC
c)Chứng minh AD<DC
d)Kẻ AK vuông góc với BC(k thuộc BC),Chứng minh:AE là phân giác của CAK
aXét 2 tam giác BHA và tam giác BHE có:
H1=H2=90
B1=B2(phân giác góc B)
BH chung
=> tam giác BHA = tam giác BHE(g.c.g)
b Chứng minh AK // DE mà
MÀ AK vuông góc vs BC
=> ED vuông góc vs BC
Cho tam giác ABC vuông tại A,kẻ phân giác BD của góc B(D thuộc AC),kẻ AH vuông góc với BD(H thuộc BD),AH cắt BC tại E.
a)Chứng minh:tam giác BHA=tam giác BHE.
b)Chứng minh:ED vuông góc với BC
c)Chứng minh AD<DC
d)Kẻ AK vuông góc với BC(k thuộc BC),Chứng minh:AE là phân giác của CAK
a, Xét △BHA vuông tại H và △BHE vuông tại H
Có: BH là cạnh chung
ABH = EBH (gt)
=> △BHA = △BHE (cgv-gn)
b, Vì △BHA = △BHE (cmt) => BA = BE (2 cạnh tương ứng)
Xét △BAD và △BED
Có: AB = BE (cmt)
ABD = EBD (gt)
BD là cạnh chung
=> △BAD = △BED (c.g.c)
=> BAD = BED (2 góc tương ứng)
Mà BAD = 90o
=> BED = 90o
=> DE ⊥ BE
=> DE ⊥ BC
c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)
Xét △EDC vuông tại E có: DE < DC (cạnh góc vuông nhỏ hơn cạnh huyền)
=> AD < DC
d, Ta có: AD = ED (cmt) => △ADE vuông tại D => DAE = DEA
Vì AK ⊥ BC (gt) và DE ⊥ BC (cmt)
=> AK // DE (từ vuông góc đến song song)
=> KAE = AED (2 góc so le trong)
mà DAE = DEA (cmt)
=> KAE = DAE => KAE = CAE
Mà AE nằm giữa AK, AC
=> AE là phân giác CAK
Cho tam giác ABC vuông tại A, đường phân giác BK (K thuộc AC). Kẻ KI vuông góc với BC, I thuộc BC
a, chứng minh tam giác ABK = tam giác IBK
b, kẻ đường cao AH của tam giác ABC. Chứng minh AI là phân giác của góc HAC
c, gọi F là giao điểm của AH và BK. Chứng minh tam giác AFK cân và AF< KC
d, Lấy M thuộc AH, sao cho AM =AC. Chứng minh IM vuông góc với IF
acj giúp e vs mai e kthk r
b) Ta có: KI\(\perp\)BC(gt)
AH\(\perp\)BC(gt)
Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)
Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)
Ta có: ΔABK=ΔIBK(cmt)
nên KA=KI(hai cạnh tương ứng)
Xét ΔKAI có KA=KI(cmt)
nên ΔKAI cân tại K(Định nghĩa tam giác cân)
Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)
Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)
Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)
a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có
BK chung
\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))
Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)
Cho tam giác ABC vuông tại A, phân giác BF (F thuộc AC). Kẻ vuông góc với BF tại H.
Lấy E sao cho H là trung điểm của EF. Kẻ FK vuông góc với BC (K thuộc BC).
a) Chứng minh: CE = CF; BA = BK
b) AK // CH
c) CH, FK, AB đồng quy tại một điểm
a, tam giác vuông CHF=CHE (c.g.c) => CF=CE => Tam giác CEF cân tại C
gọi O là giao điểm của Ak và BF
tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK
BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180
=> AOB=KOB=90=> BF vuông AK
=> AK//HC ( cùng vuông BF)
b, tam giác vuông ABF=KBF => AF=FK
cạnh huyền FC > FK => FC > FA
c, gọi D là giao điểm AB;CH
tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F
mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này
=> Ba đường thẳng CH, FK,AB đồng quy