Cho ∆ABC vuông tại C, Vẽ phân giác BD. Tính AB, AD, CD. Biết AC=6 cm, CB=8 cm nhanh giúp tớ với ạ
Cho Tam giác ABC vuông tại A biết AB = 6 cm ,AC =8cm .kẻ phân giác BD a) Tính BC,AD,CD b) Kẻ đg cao AH, BD tại E. CM tam giác AED cân tại A c) CM CA/AH=AD/EH đ) Từ C kẻ đt vuông góc vs BD cắt AB tại F CM BF/BD=BC/BD Giúp mình vs ạk
a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Cho tam giác ABC vuông tại A có AB bằng 6 cm BC = 10 cm Lấy điểm E trên cạnh AC sao cho AE = 2 cm. Qua E vẽ đường thẳng vuông góc với AC cắt CB tại D
a, C/m DE//AB
b, tính độ dài CE, BD, CD
a: DE⊥AC
AB⊥AC
Do đó: DE//AB
b: AC=8cm
=>CE=8-2=6(cm)
Xét ΔCAB có ED//AB
nên CD/CB=CE/CA
=>CD/10=6/8=3/4
=>CD=7,5(cm)
=>BD=2,5(cm)
Cho tam giác ABC vuông tại A có AB bằng 6 cm,AC bằng 8 cm.Vẽ đường cao AH.Chứng minh: a)tam giác HCA đồng dạng với tam giác ACB b)Tính BC,AH,CH,BH c)Vẽ đường phân giác AD của tam giác ABC Tính BD,CD d)Trên AH lấy điểm K sao cho AK bằng 3,6 cm .Từ K kẻ đường thẳng song song với BC cắt AB và AC lần lượt tại M và N.Tính diện tích tứ giác BMNC đ) Trong tam giác ADB kẻ đường phân giác DE , trong tam giác ADC kẻ đường phân giác DF Cm:EA/EB.DB/DC.FC/FA=1(Hay EA.DB.FC=EB.DC.FA)
a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔHCA đồng dạng với ΔACB
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Vẽ đường cao AH.
a) Chứng minh HBAABC.
b) Tính BC, AH.
c) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
Cho tam giác ABC vuông tại A .Có AB =6 cm ,BC=10 cm . Kẻ đường cao AH
a, Tính AC,BH,AH .Tính chu vi và diện tích tam giác ABC
b, Kẻ phân giác AD .Tính BD,AD
C, Kẻ HM,HN lần lướt vuông góc với AB,AC CM :AM.AB=AN.AC
Làm giúp mk . cảm ơn ạ ^_^
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm
* Áp dụng hệ thức :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm
* Áp dụng hệ thức :
\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm
\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm
Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm
Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2
b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )
\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)
\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm
\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm
Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có :
\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm
a) Áp dụng định lý Py-ta-go vào tam giác ABC có :
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64
=> AC = 8
Xét tam giác ABH và tam giác BCA có
\(\hept{\begin{cases}\widehat{ABC}\text{ chung }\\\widehat{BAC}=\widehat{AHB}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ABH\approx\Delta BCA\left(g-g\right)\)
=> \(\frac{AH}{AB}=\frac{BH}{AC}=\frac{AB}{BC}\)
=> \(\frac{AH}{6}=\frac{BH}{8}=\frac{6}{10}\)
=> \(AH=3,6;BH=4,8\)
Cho tam giác ABC vuông tại C biết CB = 8cm , AB = 10cm
a) Tính AC
b) Trên AB lấy điểm D sao cho AD = 6 cm . C/m : tam giác ACD cân
c) Tia phân giác góc A cắt CD và CB tại I và K . C/m : AI vuông góc với CD
d) So sánh độ dài KC và KB
Cho tam giác ABC với AD là đường phân giác của góc A , biết AB = 6 cm , AC= 8 cm , BC = 10 cm . Tính BD và CD
Áp dụng định lý Pi-ta-go, ta có:
\(BD^2=AB^2+AD^2=6^2+8^2=100\)
=> BD = 10 (cm)
AD là phân giác của góc A:
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{CD}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}\)
Mà: \(BD+CD=10\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{\left(BD+DB\right)}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\)
\(\Rightarrow CD=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\)
Cho hình vẽ bên: Biết BD CE AB AC a) Chứng minh AD AE AB AC b) Cho biết AD=2cm, BD=1cm và AC 4cm . Tính EC.
Cho tam giác ABC vuông tại A có AB < AC . Vẽ đường phân giác CD của tam giác ABC. Kẻ BK vuông góc với CD ( K thuộc đường thẳng CD) a) giả sử AC = 24 cm, BC = 30 cm. Tính BD / AD b) vẽ AH là đường cao của tam giác ABC. Chứng minh tam giác HBA và tam giác ABC đồng dạng. c) chứng minh DA.DB=DK.DC d) trên đoạn thẳng DC lấy điểm F sao cho BF = BA. Gọi E là giao điểm của hai đường thẳng HA và BK. Chứng minh BF vuông góc với FE
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
cho tam giác ABC vuông tại A , có AB = 6 cm ; AC = 8 cm . vẽ đường cao AH và phân giác AD của góc A (D∈AB)
a, tính BC
b, CMR : AB2 = BH.BC
c, tính BH,BD
a, Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\left(py-ta-go\right)\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
b, Xét ΔABC và ΔABH ta có:
\(\widehat{B}\) \(chung\)
\(\widehat{BAC}=\widehat{AHB}=90^0\)
→ΔABC ∼ ΔABH(g-g)
\(\rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\\ \rightarrow AB.AB=BH.BC\\ \Rightarrow AB^2=BH.BC\)
c, Vì \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\left(cmt\right)\)
\(hay\dfrac{6}{BH}=\dfrac{10}{6}\\ \Rightarrow BH=\dfrac{6.6}{10}=3,6\left(cm\right)\)
Xét ΔABC có AD là phân giác ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}hay\dfrac{6}{BD}=\dfrac{8}{CD}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{6}{BD}=\dfrac{8}{CD}=\dfrac{6+8}{10}=\dfrac{14}{10}=\dfrac{7}{5}\\ \Rightarrow BD=\dfrac{6.5}{7}=\dfrac{30}{7}\left(cm\right)\)
a: BC=căn 6^2+8^2=10cm
b: ΔABC vuông tại A có AH vuông góc BC
nên AB^2=BH*BC
c: BH=6^2/10=3,6cm