(X-1)/2023 +(x-2)/2022+( x-3)/2023+...+(x-2022/2
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn:
x^2022+y^2022+z^2022+t^2022/a^2+b^2+c^2+d^2=x^2022/a^2+y^2022/b^2+z^2022/c^2+t^2022/d^2.
Tính T=x^2023+y^2023+z^2023+t^2023
Cho các số thực x,y,z thỏa mãn x^2022+y^2022+z^2022=x^2023+y^2023+z^2023, tính P=x^2021+y^2022+z^2023.
Tính nhanh:
2022 x 2023 - 1/2023 x 2021 + 2022
\(\dfrac{2022\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{\left(2021+1\right)\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2022}{2023\times2021+2022}\)
= 1
Chứng minh x-1/2021+x-2/2022-x+2023/2023=0
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
tính nhanh
(2022 x 2023 + 2024 x 21 + 2002 ) :( 2024 x 2023 - 2022 x 2023 )
(X+1)+(x+2)+(x+3)+.....+(x+2022)=2023
=>2022x+2022*2023/2=2023
=>2022x=-2043230
=>x=-1010,5
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
Đặt A=|x-2022|+|x-2023|+|x-2024|
TH1: x<2022
=>x-2022<0; x-2023<0; x-2024<0
=>A=-x+2022-x+2023-x+2024=-3x+6069
Vì hàm số A=-3x+6069 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi x<2022 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(1)
TH2: 2022<=x<2023
=>x-2022>=0; x-2023<0; x-2024<0
=>A=x-2022+2023-x+2024-x=-x+2025
Vì hàm số A=-x+2025 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi 2022<=x<2023 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(2)
TH3: 2023<=x<2024
=>x-2022>0; x-2023>=0; x-2024<0
=>A=x-2022+x-2023+2024-x=x-2021
Vì hàm số A=x-2021 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi 2023<=x<2024 thì \(x_{\min}=2023\)
=>A min=2023-2021=2(3)
TH4: x>=2024
=>x-2022>0; x-2023>0; x-2024>=0
=>A=x-2022+x-2023+x-2024=3x-6069
Vì hàm số A=3x-6069 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi x>=2024 thì \(x_{\min}=2024\)
=>\(A_{\min}=3\cdot2024-6069=6072-6069=3\) (4)
Từ (1),(2),(3),(4) suy ra \(A_{\min}=3\) khi x=2023
Ta có: \(P=\frac{|x-2022|+|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
\(=1+\frac{2022}{|x-2022|+|x-2023|+|x-2024|}=1+\frac{2022}{A}\)
\(A\ge3\forall x\)
=>\(\frac{2022}{A}\le\frac{2022}{3}=674\forall x\)
=>\(1+\frac{2022}{A}\le1+674=675\forall x\)
=>P<=675∀x
Dấu '=' xảy ra khi x=2023
tính nhanh 2022 x 2023 - 2020 x 2023 phần 2022 x 2023 + 2024 x 7 + 2016
\(\frac{2022\times2023-2020\times2023}{2022\times2023+2024\times7+2016}\)
\(=\frac{2023\times\left(2022-2020\right)}{2022\times2023+7\times\left(2023+1\right)+2016}\)
\(=\frac{2023\times2}{2023\times2022+7\times2023+7+2016}=\frac{2023\times2}{2023\times\left(2022+7+1\right)}=\frac{2}{2022+8}\)
\(=\frac{2}{2030}=\frac{1}{1015}\)
cho( x-1)^2022+/y+1/=0 tính giá trị biểu thức p=x^2023.y^2022/(2x+y)^2022+2023
ai giúp mình với
olm sẽ hướng dẫn em làm bài này như sau:
Bước 1: em giải phương trình tìm; \(x\); y
Bước 2: thay\(x;y\) vào P
(\(x-1\))2022 + |y + 1| = 0
Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0 ∀ y
⇒ (\(x\) - 1)2022 + |y + 1| = 0
⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1)
Thay (1) vào P ta có:
12023.(-1)2022 : )(2.1- 1)2022 + 2023
= 1 + 2023
= 2024
mọi người hãy trình bầy rõ ra nhé
em ko hiểu nên nếu nói tắt sẽ ko thể tiếp thu