Parabol \(y=ax^2+bx+2\) đi qua điểm M ( 2 ; 3 ) và N ( -1 ; 4 ) có phương trình là :
A . \(y=x^2+x+2\)
B . \(y=\dfrac{5}{6}x^2-\dfrac{7}{6}x+2\)
C . \(y=2x^2-\dfrac{7}{2}x+2\)
D . \(y=x^2-x+2\)
1. Parabol y = ax^2 + bx +C.đi qua A(8;0) và có đỉnh A(6;-12) có phương trình là?
2. Parabol y = ax^2 + bx +C đạ cực tiểu bằng 4 tại x =-2 và đi qua A(0;6) có pt là?
3. Parabol y = ax^2 + bx +C đi qua A(0;-1) , B(1;-1) , C( -1;1) có pt là?
4. Cho M €(P) : y = x^2 và A(2;0). Để AM ngắn nhất thì?
\(a\ne0\)
a/ \(\left\{{}\begin{matrix}64a+8b+c=0\\-\frac{b}{2a}=6\\\frac{4ac-b^2}{4a}=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-12a\\4ac-b^2+48a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=32a\\b=-12a\\4a.\left(32a\right)-\left(-12a\right)^2+48a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-36\\c=96\end{matrix}\right.\)
\(\Rightarrow y=3x^2-36x+96\)
b/ \(\left\{{}\begin{matrix}c=6\\-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=4a\\24a-16a^2=16a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
tìm parabol y=ax^2-bx+c có đỉnh I(1,5) và đi qua điểm A(4,-3)
Parabol qua A(4;-3) và đỉnh I(1;5) ta có :
-3 = 16a - 4b + c
5 = a - b + c
\(-\dfrac{\left(-b\right)}{2a}=1\Leftrightarrow b-2a=0\)
Giải hệ trên ta có : \(a=-\dfrac{8}{9};b=-\dfrac{16}{9};c=\dfrac{37}{9}\)
4. Hàm số nào sau đây nghịch biến trong khoảng ( âm vô cùng; 0)
A. y = √2 . x^2 +1
B. y = -√2 . x^2 +1
C. y = √2(x +1)^2
D. -√2 (x +1)^2.
5. Parabol y = ax^2 + bx +2 đi qua hai điểm M(1;5) và N(-2;8) có phương trình?
6. Parabol y = ax^2 + bx +c đạt cực tiểu bằng 4 tại x =-2 và đi qua A(0;6) có phương trình?
7. Parabol y = ax^2 + bx +c đi qua A(0;-1), B( 1;-1) , C(-1;1) có pt là?
8. Cho M € (P) : y= x^2 và A (2;0) . Để AM ngắn nhất thì
A. M( 1;1)
B. M( -1;1)
C. M(1;-1)
D. (-1;-1)
4A
5. \(\left\{{}\begin{matrix}a+b+2=5\\4a-2b+2=8\end{matrix}\right.\) \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow y=2x^2+x+2\)
6. \(\left\{{}\begin{matrix}-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\24a-16a^2=16a\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
7. \(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) \(\Rightarrow y=x^2-x-1\)
8.
a/ \(AM=\sqrt{2}\)
b/ \(AM=\sqrt{10}\)
c/ Không thuộc đồ thị
d/ Không thuộc đồ thị
Đáp án A đúng
Parabol (P): y= ax2+bx+2 đi qua M ( 1;5); N(-2;8). Tính a+2b
Theo mk thì cứ thay vào r ghpt
Vì \(M\left(1;5\right)\in\left(P\right)\)
Thay x=1;y=5
\(a+b+2=5\Leftrightarrow a+b=3\)
tương tự
\(4a-2b+2=8\Leftrightarrow4a-2b=6\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\4a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Rightarrow a+2b=2+2=4\)
Tìm Parabol 2 (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Tìm Parabol (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
tìm parabol (P) y= ax^2+bx+c, biết rằng P đi qua 3 điểm A (1;-1), B(2;3), C(-1;-3)
Do (P) qua A;B;C, thay tọa độ A, B, C vào pt (P) ta được:
\(\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=3\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-3\end{matrix}\right.\)
\(\Rightarrow\left(P\right):\) \(y=x^2+x-3\)
1. Parabol (P) : y =ax^2 +bx +c đạt cực tiểu bằng 4 tại x=-2 và đi qua A(0;6) có pt là?
2. Parabol y = m^2.x^2 và đg thẳng y = -4x -1 cắt nhau tại hai điểm phân biệt với giá trị của m bằng?
Xác định Parabol (P): y = a x 2 + bx + 2 biết rằng Parabol đi qua hai điểm M (1; 5) và N (2; −2).
A. y = −5 x 2 + 8x + 2
B. y = 10 x 2 + 13x + 2
C. y = −10 x 2 − 13x + 2
D. y = 9 x 2 + 6x – 5