cho ( 11-3y^2-3z^2-2xz-2yt)/x^2+xt+t^2+1) = 2. tìm min,maxP=x+y+z+t
tìm gtln gtnn của biểu thức M=x+y+z+t biết x,y,z,t thoả mãn: (11-3y^2-3t^2-2xz-2yt)/(x^2+xt+t^2+1)
Rút gọn phân thức: \(\frac{\text{x^2+y^2-z^2-2zt+2xy-t^2}}{x^2-y^2+z^2-2yt+2xz-t^2}\)
Phân tích đa thức thành nhân tử:1)35x(y-3)-14y(8-y) 2)4x^2-y^2+10-25. 3)9x^2-y^2+10yz-25z^2, 4)x^2-y^2+z^2-t^2-2xz+2yt 5)(x-y+4)^2-(2x+3y-1)^2
Rút gọn phân thức: E= \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\)
Pt đa thức thành nhân tử :
b, x mũ 2 - y mũ 2 + z mũ 2 - t mũ 2 - 2xz + 2yt
\(x^2-y^2+z^2-t^2-2xz+2yt=\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2-2yt+t^2\right)=\)
\(=\left(x-z\right)^2-\left(y-t\right)^2=\)
\(=\left[\left(x-z\right)-\left(y-t\right)\right]\left[\left(x-z\right)+\left(y-t\right)\right]\)
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2+2yt+t^2\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z+y-t\right)\times\left(x-z-y+t\right)\)
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=x^2-2xz+z^2-\left(y^2-2yt+t^2\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z+y-t\right)\left(x-z-y+t\right)\)
a)x^2-8x+16-y^2
b)4x^2-y^2+10y-25
c)x^2-y^2+z^2-t^2-2xz+2yt
a) \(x^2-8x+16-y^2=\left(x-4\right)^2-y^2=\left(x-y-4\right)\left(x+y-4\right)\)
b) \(4x^2-y^2+10y-25=4x^2-\left(y-5\right)^2=\left(2x-y+5\right)\left(2x+y-5\right)\)
c) \(x^2-y^2+z^2-t^2-2xz+2yt=\left(x-z\right)^2-\left(y-t\right)^2=\left(x-y-z+t\right)\left(x+y-x-t\right)\)
p/s: chúc bạn học tốt
Cho x,y,z>=0 và x+y+z=1. Tìm MaxP=(x+2y+3z)(6x+3y+2z)
\(P=\dfrac{1}{2}\left(2x+4y+6z\right)\left(6x+3y+2z\right)\le\dfrac{1}{8}\left(2x+4y+6z+6x+3y+2z\right)^2\)
\(P\le\dfrac{1}{8}\left(8x+7y+8z\right)^2\le\dfrac{1}{8}\left(8x+8y+8z\right)^2=8\)
\(P_{max}=8\) khi \(\left\{{}\begin{matrix}x+y+z=1\\7y=8y\\2x+4y+6z=6x+3y+2z\end{matrix}\right.\) \(\Leftrightarrow\left(x;y;z\right)=\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)
Cho x, y, z > 0 và x + y + z = 3. Tìm min \(P=\dfrac{x^2}{y+3z}+\dfrac{y^2}{z+3x}+\dfrac{z^2}{x+3y}\)
Áp dụng BĐT Svac ta có:
\(P=\dfrac{x^2}{y+3z}+\dfrac{y^2}{z+3x}+\dfrac{z^2}{x+3y}\ge\dfrac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\dfrac{x+y+z}{4}=\dfrac{3}{4}\)
Dấu '=' xảy ra khi \(x=y=z=1\)
Vậy \(P_{min}=\dfrac{3}{4}\) khi \(x=y=z=1\)
Cho x,y,z dương t/m x(4-xy-xz)≤2xz(y+z)-y-3z. Tìm min của P=4x+y+3z