A=(1/x-2 -1/x+2).x+2/2 với x khác +-2
a) Rút gọn A
b) Tìm x để A=2
Giúp mình vớiiii
Cho biểu thức M = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
a) Rút gọn M
b) Tìm x để M = -1/2
Giúp mk với mn ơi, mai mk nộp rồi!!
\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)
Đặt \(\sqrt{x}=t\)
\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)
a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)
\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
Cho biểu thức P=(2x^3-x^4-2x+1)/(4x^2-1)+(8x^2-4x+2)/(8x^3+1) với x khác 1/2; x khác -1/2
a,Rút gọn P
b,Tìm x để P>0
\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)
\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)
A= (2/x-√x - 1/√x-1) : x-4/x√x+√x - 2x với x>0, x khác 1, x khác 4 a) rút gọn A b) tìm x để A > -1/2
a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)
\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)
cho đa thức A=2x(x+3)-(x+2)(2x-3)+x-2
a) rút gọn A
b) tính giá trị của A khi (x+1)=2
c) tìm x để A cs giá trị =\(\dfrac{1}{2}\)
a) A=2x2+6x-2x2+3x-4x+6+x-2=6x+4
b) x+1=2 => x=1
Tại x=1, A=6*1+4=10
c) A=6x+4=1/2 => x=(1/2-4)/6=-7/12
`!`
`a,A=2x(x+3) -(x+2)(2x-3)+x-2`
`= 2x^2 + 6x-(2x^2 -3x+4x-6)+x-2`
`= 2x^2 +6x+2x^2 +3x-4x+6+x-2`
`= (2x^2-2x^2)+(6x+3x-4x+x)+(6-2)`
`=6x+4`
`b, x+1=2`
`=>x=2-1`
`=>x=1`
`A=6x+4` mà `x=1`
Thì `6x+4=6.1+4=10`
`c,` Ta có :
`6x+4=1/2`
`=> 6x=1/2-4`
`=> 6x= -7/2`
`=>x=-7/2 : 6`
`=>x=-7/2 xx1/6`
`=>x= -7/12`
Bài 1: Cho biểu thức: A= (x^2-3/x^2-9 + 1/x-3):x/x+3
a, Rút gọn A.
b, Tìm các giá trị của x để A = 3
Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2
a, Rút gọn biểu thức,
b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.
Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3
a, Rút gọn biểu thức A.
b, Tính giá trị của A khi x=5
c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.
Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2
a, Rút gọn A.
b, Tính giá trị của A khi x = -4
c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
A= 1
B = \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\) : \(\dfrac{2\sqrt{x}}{x+2\sqrt{x}}\)với x > 0
a) Rút gọn B
b) Tìm x để B>2A
a: \(B=\dfrac{\sqrt{x}+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{x+2\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: B>2A
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}>2\)
=>-căn x+1>0
=>-căn x>-1
=>căn x<1
=>0<x<1
F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F b) tìm x để F=2 c) tìm x để 5/F là số nguyên
a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F b) tìm x để F=2 c) tìm x để 5/F là số nguyên
Câu a đã làm: F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F - Hoc24
\(b,F=2\Leftrightarrow\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}=2\\ \Leftrightarrow2\sqrt{x}\left(x-2\sqrt{x}+1\right)=2x\sqrt{x}-4x+2\sqrt{x}+2x-2\sqrt{x}+1\\ \Leftrightarrow2x\sqrt{x}-4x+2\sqrt{x}=2x\sqrt{x}-2x+1\\ \Leftrightarrow2x-2\sqrt{x}+1=0\\ \Leftrightarrow2\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{2}=0\\ \Leftrightarrow2\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\\ \Leftrightarrow x\in\varnothing\)
chỉ mình câu này với
rút gon biểu thức A= x^2+2x/ x^2-4x+4 : ( x+2/x-1/2-x+6-x^2/x^2-2x) với x khác 0,2,-2
rút gọn A
tính giá trị của A biết I 2x +1 I =3
tìm x để A<0 , tìm giá trị x nguyên để A nhận giá trị nguyên , tìm gía trị nhỏ nhất của với x>2