Những câu hỏi liên quan
Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 0:41

\(\left(x^2;y^2\right)=\left(a;b\right)\Rightarrow P=\dfrac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

Ta có:

\(\left(a+b\right)\left(1+ab\right)-\left(a-b\right)\left(1-ab\right)=2b\left(a^2+1\right)\ge0;\forall a;b\ge0\)

\(\Rightarrow\left(a+b\right)\left(1+ab\right)\ge\left(a-b\right)\left(1-ab\right)\)

\(\Rightarrow P\le\dfrac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\le\dfrac{\left(a+b+1+ab\right)^2}{4\left(1+a\right)^2\left(1+b\right)^2}=\dfrac{1}{4}\)

\(P_{max}=\dfrac{1}{4}\) khi \(\left(a;b\right)=\left(1;0\right)\) hay \(\left(x;y\right)=\left(1;0\right)\)

Bình luận (0)
Nguyễn Hoàng Minh
24 tháng 3 2022 lúc 15:26

\(P=\dfrac{\left[\left(x-y\right)\left(1+xy\right)\right]\left[\left(x+y\right)\left(1-xy\right)\right]}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)

Áp dụng BĐT Cosi ta có:

\(\left(x-y\right)\left(1+xy\right)\le\dfrac{\left(x-y\right)^2+\left(1+xy\right)^2}{2}=\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{2}\\ \left(x+y\right)\left(1-xy\right)\le\dfrac{\left(x+y\right)^2+\left(1-xy\right)^2}{2}=\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{2}\)

\(\to P\le\dfrac{\left(1+x^2\right)^2\left(1+y^2\right)^2}{4\left(1+x^2\right)^2\left(1+y^2\right)^2}=\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

Bình luận (0)
Bùi Việt Anh
Xem chi tiết
Nguyễn Việt Hải
16 tháng 3 2020 lúc 21:43

6.6..6 - 6=?

Bình luận (0)
 Khách vãng lai đã xóa
IS
16 tháng 3 2020 lúc 22:00

đặt \(a=x^2,b=y^2\left(a,b\ge0\right)\)thì \(P=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

Zì \(a,b\ge0\)nên

\(\left(a-b\right)\left(1-ab\right)=a-a^2b-b+ab^2\le a+ab^2=a\left(1+b^2\right)\le a\left(1+2b+b^2\right)=a\left(1+b\right)^2\)

Lại có \(\left(1+a\right)^2=\left(1-a\right)^2+4a\ge4a\)

=>\(P\le\frac{a\left(1+b\right)^2}{4a\left(1+b\right)^2}=\frac{1}{4}\)

dấu "=" xảy ra khi zà chỉ khi\(\hept{\begin{cases}a=1\\b=0\end{cases}=>\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)

zậy \(maxP=\frac{1}{4}khi\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Thắng Nguyễn
Xem chi tiết
Nguyễn Thị Minh Thảo
Xem chi tiết
IS
16 tháng 3 2020 lúc 22:19

https://olm.vn/hoi-dap/detail/221163930084.html

cậu tìm link này nhé . mình đã trả lời câu này cho 1 bạn r . 

học giỏi

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
27 tháng 10 2020 lúc 20:41

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
29 tháng 10 2020 lúc 20:24

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
30 tháng 10 2020 lúc 11:38

Bài 4: Theo giả thiết, ta có: \(x\left(x+y+z\right)=3yz\)(*)

Vì x > 0 nên chia cả hai vế của (*) cho x2, ta được: \(1+\frac{y}{x}+\frac{z}{x}=3.\frac{y}{x}.\frac{z}{x}\)

+) \(\left(x+y\right)^3+\left(y+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)\(\Leftrightarrow\left(1+\frac{y}{x}\right)^3+\left(\frac{y}{x}+\frac{z}{x}\right)^3+3\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)\left(\frac{y}{x}+\frac{z}{x}\right)\le5\left(\frac{y}{x}+\frac{z}{x}\right)^3\)(Chia hai vế của bất đẳng thức cho x3)

Đặt \(s=\frac{y}{x},t=\frac{z}{x}\left(s,t>0\right)\)thì giả thiết trở thành \(1+s+t=3st\)và ta cần chứng minh \(\left(1+s\right)^3+\left(1+t\right)^3+3\left(s+t\right)\left(1+s\right)\left(1+t\right)\le5\left(s+t\right)^3\)(**)

Ta có: \(1+s+t=3st\le\frac{3}{4}\left(s+t\right)^2\Leftrightarrow3\left(s+t\right)^2-4\left(s+t\right)-4\ge0\Leftrightarrow\left[3\left(s+t\right)+2\right]\left(a+b-2\right)\ge0\Rightarrow s+t\ge2\)(do \(3\left(s+t\right)+2>0\forall s,t>0\))

Đặt \(s+t=f\)thì \(f\ge2\)

(**)\(\Leftrightarrow4f^3-6f^2-4f\ge0\Leftrightarrow f\left(2f+1\right)\left(f-2\right)\ge0\)*đúng với mọi \(f\ge2\)*

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
ank viet
Xem chi tiết
Phạm Thu Trang
Xem chi tiết
Lầy Văn Lội
5 tháng 6 2017 lúc 17:40

Áp dụng BĐT AM-GM: \(\left(x^2-y^2\right)\left(1-x^2y^2\right)\le\frac{1}{4}\left(x^2-y^2+1-x^2y^2\right)^2=\frac{1}{4}\left(1-y^2\right)^2\left(1+x^2\right)^2\)

\(P\le\frac{1}{4}\frac{\left(1-y^2\right)^2}{\left(1+y^2\right)^2}\)

mà theo BĐT AM-GM:\(\left(1-y\right)\left(1+y\right)\le\frac{1}{4}\left(1-y+1+y\right)^2=1\)

\(\Rightarrow P\le\frac{1}{4}.\frac{1}{\left(1+y^2\right)^2}\le\frac{1}{4}.\frac{1}{1}=\frac{1}{4}\)

Dấu = xảy ra khi x=1;y=0 wait : có gì đó sai sai. số thực

Bình luận (0)