Giải pt 6+2x=12-4x
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
Giải pt và bpt:
a) x-2/18 - 2x+5/12 lớn hơn x+6/9 - x-3/6
b) (2x-3)(2x+3) nhỏ hơn hoặc bằng 0
c) (3-2x)(4x+8) lớn hơn hoặc bằng 0
\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)
\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)
\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)
\(\Leftrightarrow-2x>61\)
\(\Leftrightarrow x< -\frac{61}{2}\)
Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)
Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3
\(\left(2x-2\right)\left(2x+3\right)\le0\)
TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)
TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)
Vậy ...
\(\left(3-2x\right)\left(4x+8\right)\ge0\)
TH1 : \(\hept{\begin{cases}3-2x\ge0\\4x+8\ge0\end{cases}}\)
\(< =>\hept{\begin{cases}3\ge2x\\4x\ge-8\end{cases}< =>\hept{\begin{cases}\frac{3}{2}\ge x\\x\ge-\frac{8}{4}=-2\end{cases}}}\)
TH2 : \(\hept{\begin{cases}3-2x\le0\\4x+8\le0\end{cases}}\)
\(< =>\hept{\begin{cases}3\le2x\\4x\le-8\end{cases}}< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-2\end{cases}}\)
Vậy ...
giải PT
2x=7+x
x-6=2x
3x+1=5x+2
4x-3=2x+2
2(x-3)12
3(x+4)=6
ta có 2x =7+x
->2x+x =7
->3x =7
->x =7/3
vậy x =7/3
\(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{-6}{1-4x^2}\)giải pt
\(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=-\dfrac{6}{1-4x^2}\left(ĐKXĐ:x\ne\pm\dfrac{1}{2}\right)\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=6\)
\(\Leftrightarrow4x^2+4x+1-\left(4x^2-4x+1\right)=6\)
\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=6\)
\(\Leftrightarrow8x=6\)
\(\Leftrightarrow x=\dfrac{6}{8}=\dfrac{3}{4}\)
Vậy \(S=\left\{\dfrac{3}{4}\right\}\)
I) giải các pt tích:
1) 3x - 12= 5x(x - 4)
2) 3x - 15= 2x(x - 5)
3) 3x(2x - 3) + 2(2x - 3)= 0
4) (4x - 6) (3 - 3x)= 0
1) Ta có: 3x-12=5x(x-4)
\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3x-12-5x^2+20x=0\)
\(\Leftrightarrow-5x^2+23x-12=0\)
\(\Leftrightarrow-5x^2+20x+3x-12=0\)
\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)
2) Ta có: 3x-15=2x(x-5)
\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)
3) Ta có: 3x(2x-3)+2(2x-3)=0
\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)
4) Ta có: (4x-6)(3-3x)=0
\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)
4) (4x - 6 ) ( 3 - 3x ) = 0
<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)
Bài 1 :
a, Ta có : \(3x-12=5x\left(x-4\right)\)
=> \(3x-12=5x^2-20x\)
=> \(3x-12-5x^2+20x=0\)
=> \(5x^2-23x+12=0\)
=> \(5x^2-20x-3x+12=0\)
=> \(5x\left(x-4\right)-3\left(x-4\right)=0\)
=> \(\left(5x-3\right)\left(x-4\right)=0\)
=> \(\left[{}\begin{matrix}5x-3=0\\x-4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{3}{5}\) và x = 4 .
b, Ta có : \(3x-15=2x\left(x-5\right)\)
=> \(3x-15-2x\left(x-5\right)=0\)
=> \(3\left(x-5\right)-2x\left(x-5\right)=0\)
=> \(\left(3-2x\right)\left(x-5\right)=0\)
=> \(\left[{}\begin{matrix}3-2x=0\\x-5=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{3}{2}\) và x = 5 .
c, Ta có : \(3x\left(2x-3\right)+2\left(2x-3\right)=0\)
=> \(\left(3x+2\right)\left(2x-3\right)=0\)
=> \(\left[{}\begin{matrix}3x+2=0\\2x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=-2\\2x=3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(-\frac{2}{3}\) và x = \(\frac{3}{2}\) .
d, Ta có : \(\left(4x-6\right)\left(3-3x\right)=0\)
=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}4x=6\\-3x=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{6}{4}\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 1 và x = \(\frac{6}{4}\) .
Giải pt tích: (2x2+1)(4x-3)=(2x2+1)(x-12)
ta có : \(2x^2+1\ge1>0\forall x\)
\(\Rightarrow\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
\(\Leftrightarrow4x-3=x-12\Leftrightarrow3x=-9\Leftrightarrow x=-3\)
vậy \(x=-3\)
Giải PT: x^2-4x+12 / x^2-4x+6 = x^2-4x+8
Đặt \(x^2-4x=t\)
Phương trình \(\Leftrightarrow\frac{t+12}{t+6}=t+8\Leftrightarrow t+12=\left(t+6\right)\left(t+8\right)\)
\(\Leftrightarrow t+12=t^2+14t+48\Leftrightarrow t^2+13t+36=0\Leftrightarrow\left(t+4\right)\left(t+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-4\\t=-9\end{cases}}}\)
Với \(t=-4\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Với \(t=-9\Rightarrow x^2-4x+9=0\)vô nghiệm vì \(\Delta=16-36=-20< 0\)
Vậy phương trình có nghiệm x=2
GIẢI PT
a) 4x-8/ 2x^2 +1=0
b) x^2 -x-6 / x-3=0
c) x+5 /3x-6 - 1/2 =2x-3 /2x -4
d) 12 / 1-9x^2 = 1-3x / 1+3x - 1+3x / 1-3x
<=>4x-8=0
<=>4x=8
=.x=2(nhan)
Giải pt
\(\dfrac{x^2+2x}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
\(\Leftrightarrow\dfrac{x^2+2x+1-1}{x+1}+\dfrac{x^2+8x+16+4}{x+4}=\dfrac{x^2+4x+4+2}{x+2}+\dfrac{x^2+6x+9+3}{x+3}\)
\(\Leftrightarrow x+1-\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow2x+5-\dfrac{1}{x+1}+\dfrac{4}{x+4}=2x+5+\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
=>-x-4+4x+4=2x+6+3x+6
=>3x=5x+12
=>-2x=12
hay x=-6(nhận)