Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Hảo
Xem chi tiết
Đỗ Thị Huyền Trang
11 tháng 12 2017 lúc 20:30

ta có :

\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) \(\Rightarrow\) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

đặt \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) = k \(\Rightarrow\) a = ck ; b = dk

\(\dfrac{ac}{bd}\) = \(\dfrac{ck.c}{dk.d}\) = \(\dfrac{c^2.k}{d^2.k}\) = \(\dfrac{c^2}{d^2}\) (1)

\(\dfrac{a^2+c^2}{b^2+d^2}\) = \(\dfrac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}\) = \(\dfrac{c^2.k^2+c^2}{d^2.k^2+d^2}\) = \(\dfrac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\) = \(\dfrac{c^2}{d^2}\)(2)

từ (1) , (2) \(\Rightarrow\) \(\dfrac{ac}{bd}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)

Nguyễn Tất Thành
Xem chi tiết
ỵyjfdfj
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 22:36

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2-c^2}{b^2-d^2}=k^2\)

\(\dfrac{ac}{bd}=k^2\)

Do đó: \(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

Nguyễn Hoàng Tuyền
Xem chi tiết
I don
29 tháng 7 2018 lúc 21:46

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Nguyễn Hoàng Tuyền
29 tháng 7 2018 lúc 21:54

Thanks  bạn nhé

ღ Thiên Thiên ღ
30 tháng 7 2018 lúc 9:46

Ta co : a/b = c/d => a2/b2 = c2/d2 = ac/bd (*)

ma a2/b= c2/d= a2 + c2/ b+ d

Tu (*) ac/bd = a2 + c2/b2 + d2 (dpcm)

Hok tot !!!

hoang thi bao ngoc
Xem chi tiết
Phan Thanh Tịnh
5 tháng 8 2016 lúc 7:51

Cách 1 :\(\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2}=\frac{ac}{bd}\left(1\right)\)

             \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)

Từ (1) và (2),ta có đpcm.

Cách 2 : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì a = bk ; c = dk.Ta có :

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(1\right)\)\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2),ta có đpcm.

Sorry !Mình chỉ biết 2 cách thôi !

Chàng Trai 2_k_7
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 11 2019 lúc 19:11

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)( tính chất của dãy tỉ số bằng nhau )

Vậy ...

Khách vãng lai đã xóa
•Mυη•
2 tháng 11 2019 lúc 19:17

TL :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

=> Vế trái \(=\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)

=> Vế phải \(=\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

\(\Rightarrow\)Vế trái = Vế phải

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
Kiệt Nguyễn
2 tháng 11 2019 lúc 19:17

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{ac}{bd}=\frac{bdk^2}{bd}=k^2\)(1)

và \(\frac{a^2-c^2}{b^2-d^2}=\frac{b^2k^2-d^2k^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{bdk^2}{bd}=\frac{a^2-c^2}{b^2-d^2}\left(đpcm\right)\)

Khách vãng lai đã xóa
Do Nga
Xem chi tiết
Tôi Là IS
Xem chi tiết
le bao truc
30 tháng 6 2017 lúc 17:09

Ta có
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)|
\(\Rightarrow dpcm\)

Thanh Tùng DZ
30 tháng 6 2017 lúc 17:10

đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì \(a=bk\text{ };\text{ }c=dk\text{ }\)

Ta có : \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\text{ }\left(1\right)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\text{ }\left(1\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\text{ }\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

Nguyễn Ngọc An
30 tháng 6 2017 lúc 17:13

Ta có: \(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)

Áp dụng tính chất dãy tỷ số bằng nhau, ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

=> \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\) (dpcm)

Đức Nhẫn
Xem chi tiết