Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Hằng
Xem chi tiết
Nguyễn Huy Tú
3 tháng 4 2017 lúc 12:52

Ta có: \(\left\{{}\begin{matrix}\left(3x-33\right)^{2008}\ge0\\\left|y-7\right|^{2009}\ge0\end{matrix}\right.\Rightarrow\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\ge0\)

\(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3x-33\right)^{2008}=0\\\left|y-7\right|^{2009}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-33=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=7\end{matrix}\right.\)

Vậy \(x=11;y=7\)

Diệp Thiên Giai
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 18:13

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

Lightning Farron
10 tháng 11 2016 lúc 18:18

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

Lightning Farron
10 tháng 11 2016 lúc 18:27

Bài 3:

a)\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

Vì GTTĐ của số âm bằng số đối của nó

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy với mọi \(x\le2009\) đều thỏa mãn

b)\(\left|3x+2\right|=\left|5x-3\right|\)

\(\Rightarrow3x+2=5x-3\) hoặc \(3x+2=3-5x\)

\(\Rightarrow2x=5\) hoặc \(8x=1\)

\(\Rightarrow x=\frac{5}{2}\) hoặc \(x=\frac{1}{8}\)

 

 

 

Aduvjp
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 13:18

a: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

b: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10

Xem chi tiết
Nguyễn Hoàng Hải
Xem chi tiết
Phạm Tuấn Đạt
16 tháng 8 2018 lúc 16:21

Sửa đề \(\left(3x-\frac{1}{5}\right)^{2014}+\left(\frac{2}{5}y+\frac{4}{7}\right)^{2012}\)

Do VT ko âm 

\(\Rightarrow\hept{\begin{cases}3x=\frac{1}{5}\\\frac{2}{5}y=-\frac{4}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{5}.\frac{1}{3}=\frac{1}{15}\\y=-\frac{4}{7}.\frac{5}{2}=\frac{-10}{7}\end{cases}}\)

Nguyễn Hoàng Hải
16 tháng 8 2018 lúc 16:21

\(\left(\frac{2}{5}y+\frac{4}{7}\right)^{2016}\) nhé mình thiếu dấu

Trần Thanh Phương
16 tháng 8 2018 lúc 16:25

Vì mũ chẵn luôn lớn hơn hoặc bằng 0

mà theo đề bài

\(\Rightarrow\hept{\begin{cases}3x-\frac{1}{5}=0\\\frac{2}{5}y+\frac{4}{7}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{15}\\y=\frac{-10}{7}\end{cases}}\)

Bạn Phạm Tuấn Đạt làm đúng rồi

Hoàng Đỗ Việt
Xem chi tiết
Trần Vân Anh
11 tháng 8 2017 lúc 7:39

a)/x-2009/=2009-x

TH1:x-2009=2009-x=>x=2009

TH2:x-2009=-(2009-x)=>x-2009=x-2009 đúng với mọi x

b) (2x-1)^2008>=0

(y-2/5)^2008>=0

/x-y-z/>=0

=>2x-1=0

y-2/5=0

x-y-z=0(cái này dùng ngoặc nhọn)

=>x=1/2;y=2/5;z=1/10

Phùng Minh Quân
27 tháng 3 2018 lúc 20:08

\(a)\) \(2009-\left|x-2009\right|=x\)

\(\Leftrightarrow\)\(\left|x-2009\right|=2009-x\)

Ta có : \(\left|x-2009\right|\ge0\)

\(\Rightarrow\)\(2009-x\ge0\)

\(\Rightarrow\)\(x\le2009\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}\Leftrightarrow\orbr{\begin{cases}x+x=2009+2009\\x=x\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x=4018\\x=x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2009\\x=x\end{cases}}}\)

Vậy \(x=2009\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
27 tháng 3 2018 lúc 20:15

\(b)\) \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x-1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}2x=1\\y=\frac{2}{5}\\z=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{2}+\frac{2}{5}\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

Vậy nghiệm của phương trình là \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

Chúc bạn học tốt ~ 

Cô Pé Tóc Mây
Xem chi tiết
Hoàng Phúc
1 tháng 2 2016 lúc 20:46

(2x-5)^2008 > 0

(3y+4)^2010 > 0

=>(2x-5)^2008+(3y+4)^2010>0

mà theo đề:(2x-5)^2008+(3y+4)^2010 < 0

=>(2x-5)^2008=(3y+4)^2010=0

+)(2x-5)^2008=0=>2x=5=>x=5/2

+)(3y+4)^2010=0=>3y=-4=>y=-4/3

Vậy...

Kiều Cao Dương
1 tháng 2 2016 lúc 20:45

vì 2008và 2010 chẵn nên (2x-5)^2008 và(3y+4)^2010> hoac = 0Vậy=0

x=5/2 và y =-4/3

Khuất Đăng Mạnh
Xem chi tiết
Hoàng Thị Ngọc Mai
20 tháng 10 2017 lúc 21:17

a)

\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009\)

b)

Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)

\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Mà theo đề bài :

\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)

*) Với \(\left(2x+1\right)^{2008}=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=\dfrac{-1}{2}\)

*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)

\(\Rightarrow y-\dfrac{2}{5}=0\)

\(\Rightarrow y=\dfrac{2}{5}\)

*) Với \(\left|x+y-z\right|=0\)

\(\Rightarrow x+y-z=0\)

\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)

\(\Rightarrow\dfrac{-1}{10}-z=0\)

\(\Rightarrow z=\dfrac{-1}{10}\)

Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)

FAIRY TAIL
20 tháng 10 2017 lúc 21:00

a, 2009 - \(\left|x-2009\right|\) = x

=> \(\left|x-2009\right|\) = 2009 - x

=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)

Vậy x \(\in\)n { 2009 ; 0 }

Làm gì mà căng
Xem chi tiết