Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Nguyễn Tố Như
Xem chi tiết
Nguyễn Việt Linh
Xem chi tiết
Bùi Thị Hoài
5 tháng 11 2016 lúc 17:50

vì ( 2x -1)2008>= 0        ( y-2/5)2008 >= 0    ( vì 2008 chẵn)

   / x +y-z/ >=0 

=> (2x-1)2008+(y-2/5)2008 +/x+y-z/ >= 0

dấu = xảy ra <=> đồng thời (2x-1)=0, (y-2/5) = 0 , /x+y-z/=0

<=> x=1/2 , y= 2/5 và z = -9/10

nguyễn ngọc phương anh
Xem chi tiết
đặng tuấn hưng
Xem chi tiết
Dương Helena
Xem chi tiết
Dương Helena
5 tháng 4 2016 lúc 19:21

I         I là gía trị tuyệt đối nha

Lê Mai Hồng
Xem chi tiết
soyeon_Tiểubàng giải
27 tháng 10 2016 lúc 11:47

Có: \(\left(2x-1\right)^{2016}\ge0;\left(y-\frac{2}{5}\right)^{2016}\ge0;\left|x+y+z\right|\ge0\forall x;y;z\)

Mà theo đề bài: \(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x-1\right)^{2016}=0\\\left(y-\frac{2}{5}\right)^{2016}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-9}{10}\end{cases}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{-9}{10}\)

Nguyễn Hằng
Xem chi tiết
Xyz OLM
12 tháng 9 2021 lúc 14:24

Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Leftrightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)

Vậy x = 3/4 ; y = 2/5 ; z = -7/20 

Khách vãng lai đã xóa
Yen Nhi
12 tháng 9 2021 lúc 14:34

\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

Ta có: \(\left|x-\frac{3}{4}\right|;\left|\frac{2}{5}-y\right|;\left|x-y+z\right|\ge0\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)

Mà \(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\Rightarrow z=\frac{-7}{20}\end{cases}}\)

Khách vãng lai đã xóa
Ngô Thị Ngọc Bích
Xem chi tiết
TNA Atula
20 tháng 2 2018 lúc 22:10

Vi \(\left\{{}\begin{matrix}|2x+y+1|^{2015}\ge0\\\left(x-1\right)^{2016}\ge0\end{matrix}\right.\)

=> \(|2x+y+1|^{2015}+\left(x-1\right)^{2016}\ge0\)

Dau = xay ra khi : \(\left\{{}\begin{matrix}x-1=0\\2x+y+1=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\2x+y+1=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\2.1+y+1=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

 Mashiro Shiina
20 tháng 2 2018 lúc 21:45

Ta có: \(\left|2x+y+1\right|^{2015}+\left(x-1\right)^{2016}\ge0\forall x;y\in R\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Nguyễn Hương Giang
Xem chi tiết