Trong một phòng có 144 người họp được sắp xếp ngồi hết trên các dãy ghế ( số người trên mỗi dãy ghế đều bằng nhau). Nếu người ta thêm vào phòng họp 4 dãy ghế nữa, bớt mỗi dãy ghế ban đầu 3 người và xếp lại chỗ ngồi cho tất cả các dãy ghế sao cho số người trên mỗi dãy ghế đều bằng nhau thì vừa hết các dãy ghế. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế?
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
Một phòng họp có 360 người được sắp xếp ngồi trên các dãy ghế, Nếu bớt đi 3 dãy và thêm vào mỗi dãy 4 người thì số người vẫn không thay đổi (giả thiết rằng số người trên mỗi dãy là như nhau). Hỏi lúc đầu phòng họp có mấy dãy ghế.
Gọi số dãy ghế trong phòng họp là x (dãy) (x thuộc N*, x > 3)
Vì trong phòng có 360 người nên mỗi dãy có số người là 360:x
Nếu bớt đi 3 dãy và thêm vào mooic dãy 4 người thì số người vẫn không thay đổi nên ta có phương trình :
(x -3)(360:x +4) = 360
<=> 360 + 4x -1080:x -12 = 360
<=> 4x^2-12x -1080 =0
<=> x^2 - 3 x -270 =0
<=> x^2 - 18x +15x -270 =0
<=> (x -18)(x +15) = 0
<=> x= 18 (thỏa mãn) hoặc x=-15 (loại)
Vậy số dãy trong phòng họp là 18 dãy
ĐÚNG HỘ NHA!!!!
Trong một phòng họp có một số ghế dài . Nếu xếp mỗi ghế 5 người thì có 9 người không có chổ ngồi , nếu xếp ghế 6 người thì thừa 1 ghế . Hỏi phòng họp có bao nhiêu ghế và bao nhiêu người dự họp
Kham thảo
Gọi số người dự họp và số ghế có trong phòng lần lượt là a,ba,b(a,b∈Na,b∈ℕ)
Theo bài ra ta có hệ phương trình: \hept{a=5b+9a=6b−1⇔\hept{a=59b=10\hept{a=5b+9a=6b−1⇔\hept{a=59b=10(thỏa mãn)
Trong một phòng họp có một số ghế dài . Nếu xếp mỗi ghế 5 người thì có 9 người không có chổ ngồi , nếu xếp ghế 6 người thì thừa 1 ghế . Hỏi phòng họp có bao nhiêu ghế và bao nhiêu người dự họp
TK
Bài 1:
Gọi số ghế trong phòng họp là x (cái)
số người dự họp là y (người) (x,y ∈ N*)
Vì nếu xếp mỗi ghế 5 người thì có 9 người không có chỗ ngồi
⇒5x−y=−9(1)
Vì nếu xếp ghế 6 người thì thừa 1 ghế
⇒6x−y=1(2)
Từ (1) và (2) ta có hệ phương trình: 5x-y=-9; 6x-y=1
Giải hệ ta được: x=10;y=59(t/m)
Vậy trong phòng họp có 10 cái ghế và 59 người dự họp
trong một phòng họp có một số ghế dài. nếu xếp mỗi ghế 5 người thì có 9 người không có chỗ ngồi . nếu xếp ghế 6 người thì thừa 1 ghế . hỏi trong phòng học có bao nhiêu ghế và có bao nhiêu người dự họp
Gọi số người dự họp và số ghế có trong phòng lần lượt là \(a,b\)(\(a,b\inℕ\))
Theo bài ra ta có hệ phương trình: \(\hept{\begin{cases}a=5b+9\\a=6b-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=59\\b=10\end{cases}}\)(thỏa mãn)
Trong một đợt thi chọn học sinh giỏi vào lớp chuyên, người ta thấy rằng nếu xếp mỗi phòng 24 học sinh thì thừa 1 phòng, nếu xếp mỗi phòng 20 học sinh thì có 76 học sinh không có phòng thi. Hỏi có bao nhiêu học sinh và bao nhiêu phòng thi
Trong phòng học có 1 số bàn. Cô giáo nhẩm tính sắp xếp số học sinh của lớp 5A:"Nếu xếp mỗi bàn 4 em thì còn 1 em không có chỗ ngồi. Nếu xếp mỗi bàn 5 em thì còn thừa hai bàn không có người ngồi." Hỏi lớp 5A có bao nhiêu em?
Hiệu số học sinh mỗi bàn trong hai cách xếp là:
5 - 4 = 1 (học sinh)
Hiệu số học sinh trong hai cách xếp là:
1 + 5 x 2 = 11 (học sinh)
Số bàn của lớp 5A là: 11 : 1 = 11 (bàn)
Số học sinh của lớp 5A là: 4 x 11 + 1 = 45 (học sinh)
ĐS..
trong mội phòng họp có 70 người dự họp được sắp xếp ngồi đều trên các dãy ghế nếu bới đi 2 dãy ghế thì mỗi dãy ghế phải xếp thêm 4 người mới đủ chỗ ngồi.Hỏi lúc đầu phòng họp có bao nhiêu dãy ghế
Gọi số dãy lúc đầu là x
Theo đề, ta có: 70/(x-2)-70/x=4
=>(70x-70x+140)/(x^2-2x)=4
=>4x^2-8x-140=0
=>x=7
Gọi số dãy ghế lúc đầu là x(x \(\in\) N* , x > 0)
Số ghế mỗi dãy: \(\dfrac{70}{x}\) (ghế)
Nếu bớt đi 2 dãy ghế ngồi thì mỗi dãy còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.
\(\Rightarrow\left(x-2\right)\left(\dfrac{70}{x}+4\right)=70\)
\(\Rightarrow4x-\dfrac{140}{x}+62=70\)
\(\Rightarrow4x^2-140+62x=70x\) (do x \(\in\) N* )
\(\Rightarrow4x^2-8x-140=0\)
\(\Rightarrow x=-5\left(l\right);x=7\left(n\right)\)
Vậy lúc đầu phòng họp có 7 dãy ghế.
một phòng học có 150 người, được sắp xếp ngồi đều trên các dãy ghế. nếu có thêm 71 người thì phải kê thêm hai dãy ghế thế vào mỗi dãy ghế phải bố trí thêm 3 người nữa. hỏi lúc đầu phòng học có bao nhiêu dãy ghế
Lời giải:
Giả sử ban đầu có $a$ dãy ghế thì mỗi dãy có $b$ người. Trong đó $a,b$ là số tự nhiên $\neq 0$. Ta có: $ab=150(1)$
Khi thêm 71 người thì có tổng $150+71=221$ người.
Số dãy ghế: $a+2$
Số người mỗi dãy: $b+3$
Ta có: $(a+2)(b+3)=221(2)$
Từ $(1); (2)\Rightarrow 3a+2b=65$
$\Rightarrow b=\frac{65-3a}{2}$. Thay vào $(1)$ thì:
$a.\frac{65-3a}{2}=150$
$\Leftrightarrow a(65-3a)=300$
$\Leftrightarrow 3a^2-65a+300=0$
$\Leftrightarrow a=15$ (chọn) hoặc $a=\frac{20}{3}$ (loại)
Vậy có $15$ dãy ghế.